Effective Nano-manufacturing of T-Nb2O5 for supercapacitor applications

  • Surjit Sahoo Mechanical Engineering Department, Indian Institute of Technology, Jammu 181221, India; Department of Industrial and Manufacturing Systems Engineering, Kansas State University, KS 66506, USA
  • Anand Kumar Gandham Mechanical Engineering Department, Indian Institute of Technology, Jammu 181221, India
  • Vijay Kumar Pal Mechanical Engineering Department, Indian Institute of Technology, Jammu 181221, India
Article ID: 2074
663 Views, 612 PDF Downloads, 3 Supp.file Downloads
Keywords: hydrothermal; T-Nb2O5; nanoparticles; specific capacitance; supercapacitors

Abstract

Characterized by unique physical and chemical properties, metal oxide materials have garnered significant attention for research and development in energy storage device applications. In the current work, we present a simple and low-cost synthesis protocol for orthorhombic-phase niobium oxide (T-Nb2O5) electrodes, aimed at supercapacitor applications. The as-prepared T-Nb2O5 was characterized utilizing field emission scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy, confirming the formation of orthorhombic-phase T-Nb2O5 nanoparticles. Detailed electrochemical analyses were conducted on T-Nb2O5, utilizing 1 M LiOH as the electrolyte. The unique nanoparticle architecture of T-Nb2O5 offers abundant electro-active sites and enhances reaction kinetics, leading to high specific capacitance. Notably, the T-Nb2O5 electrode achieved a gravimetric capacitance of approximately 23 F g−1 at the lowest sweep rate (5 mV s−1). These findings highlight the potential of T-Nb2O5 as an effective electroactive material for supercapacitors.

References

[1]Sahoo S, Natraj V, Swaminathan R, et al. High‐Performance Piezoelectric Nanogenerator and Self‐Charging Photo Power Cell Using Hexagonal Boron Nitride Nanoflakes and PVDF Composite. Advanced Engineering Materials; 2024.

[2]Sahoo S, Chatterjee D, Majumder SB, et al. Comparative study of pure and mixed phase sulfurized‐carbon black in battery cathodes for lithium sulfur batteries. Applied Research; 2024.

[3]Raihan KMA, Sahoo S, Nagaraja T, et al. Transforming scalable synthesis of graphene aerosol gel material toward highly flexible and wide-temperature tolerant printed micro-supercapacitors. APL Energy. 2024; 2(1). doi: 10.1063/5.0186302

[4]Wu Y, Holze R. Battery and/or supercapacitor?—On the merger of two electrochemical storage system families. Energy Storage and Conversion. 2024; 2(1): 491. doi: 10.59400/esc.v2i1.491

[5]Xu Z, Meng Z. Research progress on hydroxide fluoride-based electrode materials for supercapacitors. Energy Storage and Conversion. 2023; 1(1): 275. doi: 10.59400/esc.v1i1.275

[6]An C, Zhang Y, Guo H, et al. Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances. 2019; 1(12): 4644-4658. doi: 10.1039/c9na00543a

[7]Wang Q, Jiang X, Tong Q, et al. Continuously Interconnected N-Doped Porous Carbon for High-Performance Lithium-Ion Capacitors. Nanoenergy Advances. 2022; 2(4): 303-315. doi: 10.3390/nanoenergyadv2040016

[8]Li Y, Wang H, Wang L, et al. Mesopore‐Induced Ultrafast Na+‐Storage in T‐Nb2O5/Carbon Nanofiber Films toward Flexible High‐Power Na‐Ion Capacitors. Small. 2019; 15(9). doi: 10.1002/smll.201804539

[9]Mohammadifar M, Massoudi A, Naderi N, et al. Pseudocapacitive Behavior of Nb2O5-TNTs Nanocomposite for Lithium-ion Micro-batteries. ACERP; 2021.

[10]Arico C, Ouendi S, Taberna PL, et al. Fast Electrochemical Storage Process in Sputtered Nb2O5 Porous Thin Films. ACS Nano. 2019; 13(5): 5826-5832. doi: 10.1021/acsnano.9b01457

[11]Abdulkadir BA, Dennis JO, Adam AA, et al. Novel electrospun separator‐electrolyte based on PVA‐K2CO3‐SiO2‐cellulose nanofiber for application in flexible energy storage devices. Journal of Applied Polymer Science. 2022; 139(23). doi: 10.1002/app.52308

[12]Amate RU, Morankar PJ, Chavan GT, et al. Bi-functional electrochromic supercapacitor based on hydrothermal-grown 3D Nb2O5 nanospheres. Electrochimica Acta. 2023; 459: 142522. doi: 10.1016/j.electacta.2023.142522

[13]Lim E, Jo C, Kim H, et al. Facile Synthesis of Nb2O5@Carbon Core–Shell Nanocrystals with Controlled Crystalline Structure for High-Power Anodes in Hybrid Supercapacitors. ACS Nano. 2015; 9(7): 7497-7505. doi: 10.1021/acsnano.5b02601

[14]Lian Y, Wang D, Hou S, et al. Construction of T-Nb2O5 nanoparticles on/in N-doped carbon hollow tubes for Li-ion hybrid supercapacitors. Electrochimica Acta. 2020; 330: 135204. doi: 10.1016/j.electacta.2019.135204

[15]Theodore AM. Promising cathode materials for rechargeable lithium-ion batteries: a review. International Journal of Sustainable Energy and Environmental Research. 2023; 14(1): 51-58. doi: 10.0909/JSE.2023660090

[16]Nagaraju P, Vasudevan R, Alsalme A, et al. Surfactant-Free Synthesis of Nb2O5 Nanoparticles Anchored Graphene Nanocomposites with Enhanced Electrochemical Performance for Supercapacitor Electrodes. Nanomaterials. 2020; 10(1): 160. doi: 10.3390/nano10010160

[17]Li Y, Wang R, Zheng W, et al. Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors. Materials Technology. 2020; 35(9-10): 625-634. doi: 10.1080/10667857.2020.1734720

[18]Kamaraj P, Vennila R, Sridharan M, Vivekanand PA. Super Capacitance of Metal Oxide Nanoparticles. Cham: Springer International Publishing; 2021. pp. 1759-1771.

[19]Vicentini R, Soares DM, Nunes W, et al. Core-niobium pentoxide carbon-shell nanoparticles decorating multiwalled carbon nanotubes as electrode for electrochemical capacitors. Journal of Power Sources. 2019; 434: 226737. doi: 10.1016/j.jpowsour.2019.226737

[20]Kong L, Zhang C, Wang J, et al. Free-Standing T-Nb2O5/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. ACS Nano. 2015; 9(11): 11200-11208. doi: 10.1021/acsnano.5b04737

[21]Jiang S, Dong S, Wu L, et al. Pseudocapacitive T-Nb2O5/N-doped carbon nanosheets anode enable high performance lithium-ion capacitors. Journal of Electroanalytical Chemistry. 2019; 842: 82-88. doi: 10.1016/j.jelechem.2019.04.042

[22]Zhang S, Wu J, Wang J, et al. Constructing T-Nb2O5@Carbon hollow core-shell nanostructures for high-rate hybrid supercapacitor. Journal of Power Sources. 2018; 396: 88-94. doi: 10.1016/j.jpowsour.2018.06.007

[23]Meng X, Guan Z, Zhao J, et al. Lithium-pre-intercalated T-Nb2O5/graphene composite promoting pseudocapacitive performance for ultralong lifespan capacitors. Chemical Engineering Journal. 2022; 438: 135492. doi: 10.1016/j.cej.2022.135492

[24]Yang H, Xu H, Wang L, et al. Microwave‐Assisted Rapid Synthesis of Self‐Assembled T‐Nb2O5 Nanowires for High‐Energy Hybrid Supercapacitors. Chemistry – A European Journal. 2017; 23(17): 4203-4209. doi: 10.1002/chem.201700010

[25]Jiao X, Hao Q, Liu P, et al. Facile synthesis of T-Nb2O5 nanosheets/nitrogen and sulfur co-doped graphene for high performance lithium-ion hybrid supercapacitors. Science China Materials. 2017; 61(2): 273-284. doi: 10.1007/s40843-017-9064-6

[26]Augustyn V, Come J, Lowe MA, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Materials. 2013; 12(6): 518-522. doi: 10.1038/nmat3601

[27]Yu Y, Jin Y, Hasan N, et al. Tuning the interface interaction between Nb2O5 nanosheets/graphene for high current rate and long cyclic lithium-ion batteries. Electrochimica Acta. 2022; 435: 141397. doi: 10.1016/j.electacta.2022.141397

[28]Wang K, Wu H, Meng Y, et al. Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window. Energy & Environmental Science. 2012; 5(8): 8384. doi: 10.1039/c2ee21643d

[29]Sahoo S, Pazhamalai P, Krishnamoorthy K, et al. Hydrothermally prepared α-MnSe nanoparticles as a new pseudocapacitive electrode material for supercapacitor. Electrochimica Acta. 2018; 268: 403-410. doi: 10.1016/j.electacta.2018.02.116

[30]Deshmukh AD, Urade AR, Nanwani AP, et al. Two-Dimensional Double Hydroxide Nanoarchitecture with High Areal and Volumetric Capacitance. ACS Omega. 2018; 3(7): 7204-7213. doi: 10.1021/acsomega.8b00596

Published
2024-11-28
How to Cite
Sahoo, S., Gandham, A. K., & Pal, V. K. (2024). Effective Nano-manufacturing of T-Nb2O5 for supercapacitor applications. Energy Storage and Conversion, 2(4), 2074. https://doi.org/10.59400/esc2074
Section
Article