Tailored copper doped indium sulfide nanostructures as electrode material for supercapacitor and nano photocatalyst for dye degradation
Abstract
The unique copper-doped indium sulfide nanocrystals are synthesized by a gentle hydrothermal process. XRD, FTIR, XPS, FESEM/EDX, UV-DRS, and PL were used to characterize the final samples. Copper-doped indium sulfide nanostructures can be exploited as an active catalyst in photodegradation and as an electroactive material in supercapacitors due to their distinctive architecture. The copper-doped indium sulfide catalyst exhibits 85 percent photodegradation using methylene blue dye under natural sunlight irradiation, and the electrochemical test showed a capacitance of 668 Fg−1 at 1 Ag−1 in a 2 M KOH electrolyte solution. For future generations, photocatalyst and electrode can function as more desirable materials.
References
[1] Motaung MP, Onwudiwe DC, Wei L, et al. CuS, In2S3 and CuInS2 nanoparticles by microwave-assisted solvothermal route and their electrochemical studies. Journal of Physics and Chemistry of Solids. 2022; 160: 110319. doi: 10.1016/j.jpcs.2021.110319
[2] Soni V, Raizada P, Kumar A, et al. Indium sulfide-based photocatalysts for hydrogen production and water cleaning: a review. Environmental Chemistry Letters. 2021; 19(2): 1065−1095. doi: 10.1007/s10311-020-01148-w
[3] Sanchez-Tizapa M, Sosa-Muñiz MC, Flores-Martínez M, et al. Electrical characterization of electrodeposited indium sulfide thin films by electrochemical impedance spectroscopy and electrical force microscopy. Materials Science in Semiconductor Processing. 2020; 120: 105248. doi: 10.1016/j.mssp.2020.105248
[4] Sawant JP, Bhujbal PK, et al. Copper Indium Disulfide Thin Films: Electrochemical Deposition and Properties. ES Materials & Manufacturing; 2022. doi: 10.30919/esmm5f629
[5] Kennedy A, Ganesan H, Marnadu R, et al. An effect of metal ions (Cu, Mn) doping on the structural, morphological, optical, photoluminescence, electrical and photocatalytic properties of In2S3 nanoparticles. Optical Materials. 2022; 124: 111769. doi: 10.1016/j.optmat.2021.111769
[6] Vakalopoulou E, Rath T, Warchomicka FG, et al. Honeycomb-structured copper indium sulfide thin films obtainedviaa nanosphere colloidal lithography method. Materials Advances. 2022; 3(6): 2884-2895. doi: 10.1039/d2ma00004k
[7] Suthakaran S, Dhanapandian S, Krishnakumar N, et al. Surfactants assisted SnO2 nanoparticles synthesized by a hydrothermal approach and potential applications in water purification and energy conversion. Journal of Materials Science: Materials in Electronics. 2019; 30(14): 13174−13190. doi: 10.1007/s10854-019-01681-7
[8] Yan D, Lim YV, Wang G, et al. Unlocking Rapid and Robust Sodium Storage Performance of Zinc-Based Sulfide via Indium Incorporation. ACS Nano. 2021; 15(5): 8507-8516. doi: 10.1021/acsnano.1c00131
[9] Farzi M, Moradi M, Hajati S, et al. Synthesis of rod-like ternary Cu(Cd)-In-S and quaternary Cu-Cd-In-S by controlled ion exchange of MIL-68(In) derived indium sulfide for high energy-storage capacitor. Synthetic Metals. 2021; 278: 116815. doi: 10.1016/j.synthmet.2021.116815
[10] Kennedy A, Ganesan H, Govindaraj T, et al. Effect of Metal (Cu, Mn) Doping on the Structural, Morphological, Optical, Photoluminescence, Electrical and Photocatalytic Properties of In2s3 Nanoparticles. https://doi.org/10.21203/rs.3.rs-588347/v1.
[11] Ethiraj AS, Uttam P, KV, et al. Photocatalytic performance of a novel semiconductor nanocatalyst: Copper doped nickel oxide for phenol degradation. Materials Chemistry and Physics. 2020; 242: 122520. doi: 10.1016/j.matchemphys.2019.122520
[12] Chen YX, Li F, Wang W, et al. Optimization of thermoelectric properties achieved in Cu doped β-In2S3 bulks. Journal of Alloys and Compounds. 2019; 782: 641-647. doi: 10.1016/j.jallcom.2018.12.138
[13] Jiao M, Huang X, Ma L, et al. Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission via aqueous based synthesis. Chemical Communications. 2019; 55(100): 15053−15056. doi: 10.1039/c9cc07674c
[14] Higashimoto S, Nakase T, Mukai S, et al. Copper-indium-sulfide colloids on quantum dot sensitized TiO2 solar cell: Effects of capping with mercapto-acid linker molecules. Journal of Colloid and Interface Science. 2019; 535: 176−181. doi: 10.1016/j.jcis.2018.09.092
[15] Kumar S, Yadav N, Kumar P, et al. Design and Comparative Studies of Z-Scheme and Type II Based Heterostructures of NaNbO3/CuInS2/In2S3 for Efficient Photoelectrochemical Applications. Inorganic Chemistry. 2018; 57(24): 15112−15122. doi: 10.1021/acs.inorgchem.8b02264
[16] Mousavi-Kamazani M. A green and simple hydrothermal approach to synthesize needle-like CuInS2 nanostructures for solar cells. Journal of Materials Science: Materials in Electronics. 2018; 29(18): 16050−16056. doi: 10.1007/s10854-018-9693-9
[17] Sharma RK, Chouryal YN, Nigam S, et al. Tuning the Crystal Phase and Morphology of the Photoluminescent Indium Sulphide Nanocrystals and Their Adsorption‐Based Catalytic and Photocatalytic Applications. ChemistrySelect. 2018; 3(28): 8171-8182. doi: 10.1002/slct.201801006
[18] Aydin E, Demirci Sankir N. AZO/metal/AZO transparent conductive oxide thin films for spray pyrolyzed copper indium sulfide based solar cells. Thin Solid Films. 2018; 653: 29-36. doi: 10.1016/j.tsf.2018.03.012
[19] Bi K, Sui N, Wang Y, et al. Temperature-dependent charge carrier dynamics investigation of heterostructured Cu2S-In2S3 nanocrystals films using injected charge extraction by linearly increasing voltage. Applied Physics Letters. 2017; 110(8). doi: 10.1063/1.4977000
[20] Silambarasan M, Ramesh PS, Geetha D, et al. A report on 1D MgCo2O4 with enhanced structural, morphological and electrochemical properties. Journal of Materials Science: Materials in Electronics. 2017; 28(9): 6880-6888. doi: 10.1007/s10854-017-6388-6
[21] Li M, Zhao R, Su Y, et al. Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental. 2017; 203: 715-724. doi: 10.1016/j.apcatb.2016.10.051
[22] Frank A, Wochnik AS, Bein T, et al. A biomolecule-assisted, cost-efficient route for growing tunable CuInS2 films for green energy application. RSC Advances. 2017; 7(33): 20219-20230. doi: 10.1039/c6ra27294k
[23] Esmaili P, Kangarlou H, Savaloni H, et al. Structural, optical and electronic properties of indium sulfide compositions under influence of copper impurity produced by chemical method. Results in Physics. 2017; 7: 3380-3389. doi: 10.1016/j.rinp.2017.08.062
[24] Zhao Y, Luo F, Zhuang M, et al. Synthesis of nanostructured CuInS2 thin films and their application in dye-sensitized solar cells. Applied Physics A. 2016; 122(3). doi: 10.1007/s00339-016-9718-2
[25] Zhao X, Huang Y, Corrigan JF. Facile Preparation of Wurtzite CuInE2 (E = S, Se) Nanoparticles Under Solvothermal Conditions. Inorganic Chemistry. 2016; 55(20): 10810−10817. doi: 10.1021/acs.inorgchem.6b02177
[26] Yang W, Oh Y, Kim J, et al. Photoelectrochemical Properties of Vertically Aligned CuInS2 Nanorod Arrays Prepared via Template-Assisted Growth and Transfer. ACS Applied Materials & Interfaces. 2015; 8(1): 425-431. doi: 10.1021/acsami.5b09241
[27] Tamil Illakkiya J, Usha Rajalakshmi P, Oommen R. Enhanced optoelectronic and photoelectrochemical characteristics of nebulised spray pyrolysed ‘Cu’ rich CuInS2 thin film. Materials Science in Semiconductor Processing. 2016; 49: 84-91. doi: 10.1016/j.mssp.2016.03.027
[28] Leach ADP, Macdonald JE. Optoelectronic Properties of CuInS2 Nanocrystals and Their Origin. The Journal of Physical Chemistry Letters. 2016; 7(3): 572-583. doi: 10.1021/acs.jpclett.5b02211
[29] Dunst S, Rath T, Reichmann A, et al. A comparison of copper indium sulfide-polymer nanocomposite solar cells in inverted and regular device architecture. Synthetic Metals. 2016; 222: 115−123. doi: 10.1016/j.synthmet.2016.04.003
[30] Chen Y, Qin Z, Guo X, et al. One-step hydrothermal synthesis of (CuIn)0.2Zn1.6S2 hollow sub-microspheres for efficient visible-light-driven photocatalytic hydrogen generation. International Journal of Hydrogen Energy. 2016; 41(3): 1524−1534. doi: 10.1016/j.ijhydene.2015.11.087
[31] Zheng Z, Yu J, Cheng S, et al. Investigation of structural, optical and electrical properties of Cu doped β-In2S3 thin films. Journal of Materials Science: Materials in Electronics. 2016; 27(6): 5810-5817. doi: 10.1007/s10854-016-4496-3
[32] Rajendar V, Dayakar T, Satish B, et al. Synthesis and Characterization of Cuins2 Nanoparticles as Potential Candidates for Photocatalyst and Photovoltaic Materials Synthesis and Characterization of CuInS2 Nanoparticles as Potential Candidates for Photocatalyst and Photovoltaic Materials. Chalcogenide Letters. 2016; 13(10).
[33] Mahanthappa M, Yellappa S, Kottam N, et al. Sensitive determination of caffeine by copper sulphide nanoparticles modified carbon paste electrode. Sensors and Actuators A: Physical. 2016; 248: 104−113. doi: 10.1016/j.sna.2016.07.013
[34] Krishnakanth R, Jayakumar G, Albert Irudayaraj A, et al. Structural and Magnetic Properties of NiO and Fe-doped NiO Nanoparticles Synthesized by Chemical Co-precipitation Method. Materials Today: Proceedings. 2016; 3(6): 1370−1377. doi: 10.1016/j.matpr.2016.04.017
[35] Baneto M, Enesca A, Mihoreanu C, et al. Effects of the growth temperature on the properties of spray deposited CuInS2 thin films for photovoltaic applications. Ceramics International. 2015; 41(3): 4742-4749. doi: 10.1016/j.ceramint.2014.12.023
[36] Shanmugam N, Suthakaran S, Kannadasan N, et al. Synthesis and Characterization of Te Doped ZnO Nanosheets for Photocatalytic Application. Journal of Heterocyclics. 2015: 15-20. doi: 10.33805/2639-6734.105
[37] Jrad A, Ben Nasr T, Turki-Kamoun N. Study of structural, optical and photoluminescence properties of indium-doped zinc sulfide thin films for optoelectronic applications. Optical Materials. 2015; 50: 128−133. doi: 10.1016/j.optmat.2015.10.011
[38] Xue B, Xu F, Wang B, et al. Shape-controlled synthesis of β-In2S3nanocrystals and their lithium storage properties. CrystEngComm. 2016; 18(2): 250-256. doi: 10.1039/c5ce01955a
[39] Gannouni M, Assaker IB, Chtourou R. Experimental investigation of the effect of indium content on the CuIn5S8 electrodes using electrochemical impedance spectroscopy. Materials Research Bulletin. 2015; 61: 519-527. doi: 10.1016/j.materresbull.2014.10.070
[40] Xie BB, Hu BB, Jiang LF, et al. The phase transformation of CuInS2 from chalcopyrite to wurtzite. Nanoscale Research Letters. 2015; 10(1). doi: 10.1186/s11671-015-0800-z
[41] Paquin F, Rivnay J, Salleo A, et al. Multi-phase microstructures drive exciton dissociation in neat semicrystalline polymeric semiconductors. Journal of Materials Chemistry C. 2015; 3(41): 10715−10722. doi: 10.1039/c5tc02043c
[42] Park JC, Nam YS. Controlling surface defects of non-stoichiometric copper-indium-sulfide quantum dots. Journal of Colloid and Interface Science. 2015; 460: 173−180. doi: 10.1016/j.jcis.2015.08.037
[43] Dhanya AC, Preetha KC, Deepa K, et al. Crystalline Indium Sulphide thin film by photo accelerated deposition technique. IOP Conference Series: Materials Science and Engineering. 2015; 73: 012009. doi: 10.1088/1757-899x/73/1/012009
[44] Gao W, Liu W, Leng Y, et al. In2S3 nanomaterial as a broadband spectrum photocatalyst to display significant activity. Applied Catalysis B: Environmental. 2015; 176−177: 83-90. doi: 10.1016/j.apcatb.2015.03.048
[45] Yin HY, Tang JH, Yan CJ, et al. Facile Preparation of the Single Crystalline In2S3 Nanosheets with Highly Efficient Photocatalytic Activity. Advanced Materials Research. 2013; 834-836: 8−11. doi: 10.4028/www.scientific.net/amr.834-836.8
[46] Lugo-Loredo S, Peña-Méndez Y, Calixto-Rodriguez M, et al. Indium sulfide thin films as window layer in chemically deposited solar cells. Thin Solid Films. 2014; 550: 110−113. doi: 10.1016/j.tsf.2013.10.115
[47] Aslan F, Adam G, Stadler P, et al. Sol–gel derived In 2 S 3 buffer layers for inverted organic photovoltaic cells. Solar Energy. 2014; 108: 230-237. doi: 10.1016/j.solener.2014.07.011
[48] Shang X, Wang Z, Li M, et al. A numerical simulation study of CuInS2 solar cells. Thin Solid Films. 2014; 550: 649-653. doi: 10.1016/j.tsf.2013.10.047
[49] Amiri O, Salavati-Niasari M, Sabet M, et al. Sonochemical Method for Preparation of Copper Indium Sulfide Nanoparticles and their Application for Solar Cell. Combinatorial Chemistry & High Throughput Screening. 2014; 17(2): 183−189. doi: 10.2174/1386207311301010001
[50] Yan C, Liu F, Song N, et al. Band alignments of different buffer layers (CdS, Zn(O,S), and In2S3) on Cu2ZnSnS4. Applied Physics Letters. 2014; 104(17). doi: 10.1063/1.4873715
[51] Sun J, Chen G, Feng Y, et al. Ag/Cu co-doped ZnS–In2S3solid solutions: facile synthesis, theoretical calculations and enhanced photocatalytic activity. RSC Adv. 2014; 4(84): 44466-44471. doi: 10.1039/c4ra05960c
Copyright (c) 2024 Lilly Mary K., Geetha D., Ramesh P. S.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it for any purpose, even commercially, under the condition that the authors are given credit. With this license, authors hold the copyright.