Battery and/or supercapacitor?—On the merger of two electrochemical storage system families

  • Yuping Wu Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 210096, China
  • Rudolf Holze Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 210096, China;Chemnitz University of Technology, 09107 Chemnitz, Germany;Institute of Chemistry, Saint Petersburg State University, Petersburg 199034, Russia; School of Energy and Environment, Southeast University, Nanjing 210096, China http://orcid.org/0000-0002-3516-1918
Keywords: battery electrodes; supercapacitor electrodes; capacitive behavior; pseudocapacitive behavior; electrochemical energy storage; electrochemical energy conversion

Abstract

Similarities and analogies between materials, structures, operating and construction principles of secondary batteries and supercapacitors and their electrodes are presented, named and reviewed in context. On the material level several materials used both in batteries and supercapacitors are addressed, implications from observations made in one application for the other one are highlighted. On the electrode level a continuous change of architectural details is observed when going from an electrode with high charge storage capability to an electrode supporting high currents is detected, again this overlap provides instructive ideas for both fields. On the cell level combinations of electrodes from both fields yielding hybrid devices are an obvious outcome again with implications for both fields. Ideas and suggestions for further research and development based on a deeper exchange between both families are developed.

References

Wu Y, Holze R. Electrochemical Energy Conversion and Storage. VCH-WILEY; 2022.

Kurzweil P, Dietlmeier OK. Elektrochemische Speicher. Springer Vieweg; 2015.

Ge Y, Xie X, Roscher J, et al. How to measure and report the capacity of electrochemical double layers, supercapacitors, and their electrode materials. Journal of Solid State Electrochemistry. 2020; 24(11-12): 3215-3230. doi: 10.1007/s10008-020-04804-x

Becker HI. U.S. Patent US2800616, 23 July 1957.

Rightmire RA. U.S. Patent US3288641, 29 November 1966.

Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012; 41(2): 797-828. doi: 10.1039/c1cs15060j

Dubal DP, Wu Y, Holze R. Supercapacitors as fast storage systems for electric energy. Bunsen-Magazin. 2015; 17: 216-227.

Vangari M, Pryor T, Jiang L. Supercapacitors: Review of Materials and Fabrication Methods. Journal of Energy Engineering. 2013; 139: 72-92.

Vol’fkovich YM, Serdyuk TM. Electrochemical capacitors. Russian Journal of Electrochemistry. 2002; 38: 935-958.

Burke A. Ultracapacitors: Why, how, and where is the technology. Journal of Power Sources. 2000; 91: 37-50.

Shukla AK, Sampath S, Vijayamohanan K. Electrochemical supercapacitors: Energy storage beyond batteries. Current Science. 2000; 79: 1656-1661.

Guan L, Yu L, Chen GZ. Capacitive and non-capacitive faradaic charge storage. Electrochimica Acta. 2016; 206: 464-478. doi: 10.1016/j.electacta.2016.01.213

Dubal DP, Wu YP, Holze R. Supercapacitors: from the Leyden jar to electric busses. ChemTexts. 2016; 2(3). doi: 10.1007/s40828-016-0032-6

Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer; 1999.

Faggioli E, Rena P, Danel V, et al. Supercapacitors for the energy management of electric vehicles. Journal of Power Sources. 1999; 84: 261-269.

Nguyen T, Montemor MF. Redox active materials for metal compound based hybrid electrochemical energy storage: a perspective view. Applied Surface Science. 2017; 422: 492-497. doi: 10.1016/j.apsusc.2017.06.008

Baptista JM, Sagu JS, KG UW, et al. State-of-the-art materials for high power and high energy supercapacitors: Performance metrics and obstacles for the transition from lab to industrial scale – A critical approach. Chemical Engineering Journal. 2019; 374: 1153-1179. doi: 10.1016/j.cej.2019.05.207

Electrochemical Supercapacitors for Energy Storage and Delivery—Fundamentals and Applications. CRC Press; 2013.

Electrochemical Capacitors. In: Materials Research Foundations. Materials Research Forum LLC; 2018.

Stevic Z. Supercapacitor Design and Applications. ExLi4EvA; 2016.

Beguin F, Frackowiak E. Supercapacitors. Wiley-VCH; 2013.

Miller JM. Ultracapacitor Applications. The Institution of Engineering and Technology; 2011.

Wu Y, Holze R. Self-discharge in supercapacitors: Causes, effects and therapies: An overview. Electrochem Energy Technol. 2021; 7: 1-37.

Gür TM. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy & Environmental Science. 2018; 11: 2696-2767.

Frequently the term electrolyte meaning in most cases electrolyte solution is used. In: Solid electrolytes and ionic liquids are further options.

Holze R. From current peaks to waves and capacitive currents—on the origins of capacitor-like electrode behavior. Journal of Solid State Electrochemistry. 2016; 21(9): 2601-2607. doi: 10.1007/s10008-016-3483-1

Banerjee A, Ramasesha SK, Shukla AK. A photovoltaic stand-alone lighting system with polymeric-silica-gel-electrolyte-based substrate-integrated lead-carbon hybrid ultracapacitors. Electrochemical Energy Technology. 2015; 1(1). doi: 10.1515/eetech-2015-0001

Dubal DP, Ayyad O, Ruiz V, et al. Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chemical Society Reviews. 2015; 44(7): 1777-1790. doi: 10.1039/c4cs00266k

Zuo W, Li R, Zhou C, et al. Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science. 2017; 4(7). doi: 10.1002/advs.201600539

Krishnan SG, Harilal M, Pal B, et al. Improving the symmetry of asymmetric supercapacitors using battery-type positive electrodes and activated carbon negative electrodes by mass and charge balance. Journal of Electroanalytical Chemistry. 2017; 805: 126-132. doi: 10.1016/j.jelechem.2017.10.029

Cericola D, Kötz R. Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochimica Acta. 2012; 72: 1-17. doi: 10.1016/j.electacta.2012.03.151

Xie J, Yang P, Wang Y, et al. Puzzles and confusions in supercapacitor and battery: Theory and solutions. Journal of Power Sources. 2018; 401: 213-223. doi: 10.1016/j.jpowsour.2018.08.090

Yu L, Chen GZ. Redox electrode materials for supercapatteries. Journal of Power Sources. 2016; 326: 604-612. doi: 10.1016/j.jpowsour.2016.04.095

Akinwolemiwa B, Peng C, Chen GZ. Redox Electrolytes in Supercapacitors. Journal of The Electrochemical Society. 2015; 162(5): A5054-A5059. doi: 10.1149/2.0111505jes

Chen GZ. Supercapacitor and supercapattery as emerging electrochemical energy stores. International Materials Reviews. 2016; 62(4): 173-202. doi: 10.1080/09506608.2016.1240914

Conway BE. Electrochemical Capacitors. The Electrochemical Society Inc; 1996.

Conway BE, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. Journal of Power Sources. 1997; 66: 1-14.

Simon P, Gogotsi Y, Dunn B. Where Do Batteries End and Supercapacitors Begin? Science. 2014; 343(6176): 1210-1211. doi: 10.1126/science.1249625

Gogotsi Y, Penner RM. Energy Storage in Nanomaterials – Capacitive, Pseudocapacitive, or Battery-like? ACS Nano. 2018; 12(3): 2081-2083. doi: 10.1021/acsnano.8b01914

Kim ND, Buchholz DB, Casillas G, et al. Hierarchical Design for Fabricating Cost‐Effective High Performance Supercapacitors. Advanced Functional Materials. 2014; 24(26): 4186-4194. doi: 10.1002/adfm.201304130

Holze R. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Physical Chemistry. Springer-Verlag; 2007.

Conway BE, Gileadi E. Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage. Transactions of the Faraday Society. 1962; 58: 2493. doi: 10.1039/tf9625802493

Conway BE. Transition from “Supercapacitor” to “Battery” Behavior in Electrochemical Energy Storage. Journal of The Electrochemical Society. 1991; 138(6): 1539-1548. doi: 10.1149/1.2085829

Dubal DP, Holze R. Synthesis, properties, and performance of nanostructured metal oxides for supercapacitors. Pure and Applied Chemistry. 2014; 86(5): 611-632. doi: 10.1515/pac-2013-1021

Dubal DP, Chodankar NR, Gomez-Romero P, et al. Fundamentals of Binary Metal Oxide–Based Supercapacitors. Metal Oxides in Supercapacitors. Published online 2017: 79-98. doi: 10.1016/b978-0-12-810464-4.00004-8

Xie X, Holze R. Electrode Kinetic Data: Geometric vs. Real Surface Area. Batteries. 2022; 8(10): 146. doi: 10.3390/batteries8100146

Xie X, Holze R. Meaning and Determination of Electrode Surface Area. Available online: https://encyclopedia.pub/entry/41569 (accessed on 20 November 2023).

Brousse T, Bélanger D, Long JW. To Be or Not To Be Pseudocapacitive? Journal of The Electrochemical Society. 2015; 162(5): A5185-A5189. doi: 10.1149/2.0201505jes

Jiang Y, Liu J. Definitions of Pseudocapacitive Materials: A Brief Review. ENERGY & ENVIRONMENTAL MATERIALS. 2019; 2(1): 30-37. doi: 10.1002/eem2.12028

Sarangapani S, Tilak BV, Chen CP. Materials for Electrochemical Capacitors. Theoretical And Experimental Constraints. In: Electrochemical Capacitors. The Electrochemical Society Inc.; 1996.

Sarangapani S, Tilak BV, Chen C ‐P. Materials for Electrochemical Capacitors: Theoretical and Experimental Constraints. Journal of The Electrochemical Society. 1996; 143(11): 3791-3799. doi: 10.1149/1.1837291

Grahame DC. Properties of the Electrical Double Layer at a Mercury Surface. I. Methods of Measurement and Interpretation of Results. Journal of the American Chemical Society. 1941; 63(5): 1207-1215. doi: 10.1021/ja01850a014

Burke LD, Murphy OJ. Cyclic voltammetry as a technique for determining the surface area of RuO2 electrodes. Journal of Electroanalytical Chemistry. 1979; 96: 19-27.

Ardizzone S, Fregonara G, Trasatti S. “Inner” and “outer” active surface of RuO2 electrodes. Electrochimica Acta. 1990; 35: 263-269.

Chen GZ. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Progress in Natural Science: Materials International. 2013; 23(3): 245-255. doi: 10.1016/j.pnsc.2013.04.001

Reddy TB. Linden’s Handbook of Batteries. MacGraw-Hill; 2011.

Daniel C, Besenhard JO. Handbook of Battery Materials. WILEY-VCH; 2011.

Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science. 2014; 7(5): 1597. doi: 10.1039/c3ee44164d

Tian ZW, Dong QF, Zheng MS, Lin ZG. U.S. Patent US20090190286, 30 July 2009.

Holze R. Supercapacitors as energy storage (German). Nachr Chem. 2017; 65: 333-338.

Beck F, Euler KJ. Electrochemical energy storage (German). VDE-Verlag GmbH; 1984.

Lou S, Cheng X, Gao J, et al. Pseudocapacitive Li+ intercalation in porous Ti2Nb10O29 nanospheres enables ultra-fast lithium storage. Energy Storage Materials. 2018; 11: 57-66. doi: 10.1016/j.ensm.2017.09.012

Volkov AI, Dubal DP, Holze R, Wu Y. Mixed metal chalcogenides as active masses for supercapacitor electrodes. Adv Energy Mater.

Placke T, Heckmann A, Schmuch R, et al. Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries. Joule. 2018; 2(12): 2528-2550. doi: 10.1016/j.joule.2018.09.003

Placke T, Fromm O, Lux SF, et al. Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells. Journal of The Electrochemical Society. 2012; 159(11): A1755-A1765. doi: 10.1149/2.011211jes

Heidrich B, Heckmann A, Beltrop K, et al. Unravelling charge/discharge and capacity fading mechanisms in dual-graphite battery cells using an electron inventory model. Energy Storage Materials. 2019; 21: 414-426. doi: 10.1016/j.ensm.2019.05.031

Heckmann A, Thienenkamp J, Beltrop K, et al. Towards high-performance dual-graphite batteries using highly concentrated organic electrolytes. Electrochimica Acta. 2018; 260: 514-525. doi: 10.1016/j.electacta.2017.12.099

Kravchyk KV, Kovalenko MV. Rechargeable Dual‐Ion Batteries with Graphite as a Cathode: Key Challenges and Opportunities. Advanced Energy Materials. 2019; 9(35). doi: 10.1002/aenm.201901749

Walter M, Kovalenko MV, Kravchyk KV. Challenges and benefits of post-lithium-ion batteries. New Journal of Chemistry. 2020; 44(5): 1677-1683. doi: 10.1039/c9nj05682c

Sui Y, Liu C, Masse RC, et al. Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Materials. 2020; 25: 1-32. doi: 10.1016/j.ensm.2019.11.003

Wang X, Han X, Lim M, et al. Nickel Cobalt Oxide-Single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-Performance Supercapacitor Application. The Journal of Physical Chemistry C. 2012; 116(23): 12448-12454. doi: 10.1021/jp3028353

Dubal DP, Chen X, Wu Y, Holze R. Conducting Polymers for Supercapacitors. In: Conducting Polymers for Advanced Energy Applications. CRC Press; 2021.

Borenstein A, Hanna O, Attias R, et al. Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A. 2017; 5(25): 12653-12672. doi: 10.1039/c7ta00863e

Holze R. Composites and Copolymers Containing Redox-Active Molecules and Intrinsically Conducting Polymers as Active Masses for Supercapacitor Electrodes—An Introduction. Polymers. 2020; 12(8): 1835. doi: 10.3390/polym12081835

Holze R. Conjugated Molecules and Polymers in Secondary Batteries: A Perspective. Molecules. 2022; 27(2): 546. doi: 10.3390/molecules27020546

Kondratiev VV, Holze R. Intrinsically conducting polymers and their combinations with redox-active molecules for rechargeable battery electrodes: An update. Chemical Papers. 2021; 75(10): 4981-5007. doi: 10.1007/s11696-021-01529-7

Holze R, Wu YP. Intrinsically conducting polymers in electrochemical energy technology: Trends and progress. Electrochimica Acta. 2014; 122: 93-107. doi: 10.1016/j.electacta.2013.08.100

Fong KD, Wang T, Smoukov SK. Multidimensional performance optimization of conducting polymer-based supercapacitor electrodes. Sustainable Energy & Fuels. 2017; 1(9): 1857-1874. doi: 10.1039/c7se00339k

Lu Y, Zhang Q, Li L, et al. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. Chem. 2018; 4(12): 2786-2813. doi: 10.1016/j.chempr.2018.09.005

Huang T, Long M, Xiao J, et al. Recent research on emerging organic electrode materials for energy storage. Energy Materials. 2022; 1(1): 100009. doi: 10.20517/energymater.2021.09

Jia X, Ge Y, Shao L, et al. Tunable Conducting Polymers: Toward Sustainable and Versatile Batteries. ACS Sustainable Chemistry & Engineering. 2019; 7(17): 14321-14340. doi: 10.1021/acssuschemeng.9b02315

Espinoza-Acosta JL, Torres-Chávez PI, Olmedo-Martínez JL, et al. Lignin in storage and renewable energy applications: A review. Journal of Energy Chemistry. 2018; 27(5): 1422-1438. doi: 10.1016/j.jechem.2018.02.015

Chaleawlert‐umpon S, Berthold T, Wang X, et al. Kraft Lignin as Electrode Material for Sustainable Electrochemical Energy Storage. Advanced Materials Interfaces. 2017; 4(23). doi: 10.1002/admi.201700698

Lahiri A, Yang L, Höfft O, et al. Biodegradable Zn-ion battery with a lignin composite electrode and bio-ionic liquid based electrolyte: possible in situ energy generation by lignin electrocatalysis. Materials Advances. 2021; 2(8): 2676-2683. doi: 10.1039/d0ma00954g

Zhu J, Yan C, Zhang X, et al. A sustainable platform of lignin: From bioresources to materials and their applications in rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science. 2020; 76: 100788. doi: 10.1016/j.pecs.2019.100788

Gnedenkov SV, Opra DP, Sinebryukhov SL, et al. Hydrolysis lignin-based organic electrode material for primary lithium batteries. Journal of Solid State Electrochemistry. 2013; 17(10): 2611-2621. doi: 10.1007/s10008-013-2136-x

Gnedenkov SV, Opra DP, Sinebryukhov SL, et al. Hydrolysis lignin: Electrochemical properties of the organic cathode material for primary lithium battery. Journal of Industrial and Engineering Chemistry. 2014; 20(3): 903-910. doi: 10.1016/j.jiec.2013.06.021

Gnedenkova SV, Opra DP, Zemnukhova LA, et al. Electrochemical performance of Klason lignin as a low-cost cathode-active material for primary lithium battery. Journal of Energy Chemistry. 2015; 24: 346-352.

Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry. 2014; 7(1): 19-29. doi: 10.1038/nchem.2085

Liu L, Solin N, Inganäs O. Bio Based Batteries. Advanced Energy Materials. 2021; 11(43). doi: 10.1002/aenm.202003713

Wang M, Xu YX. Design and construction of three-dimensional graphene/conducting polymer for supercapacitors. Chinese Chemical Letters. 2016; 27(8): 1437-1444. doi: 10.1016/j.cclet.2016.06.048

Wang J, Li X, Du X, et al. Polypyrrole composites with carbon materials for supercapacitors. Chemical Papers. 2016; 71(2): 293-316. doi: 10.1007/s11696-016-0048-9

Sebastian J, Samuel JM. Recent advances in the applications of substituted polyanilines and their blends and composites. Polymer Bulletin. 2019; 77(12): 6641-6669. doi: 10.1007/s00289-019-03081-7

Eftekhari A, Li L, Yang Y. Polyaniline supercapacitors. Journal of Power Sources. 2017; 347: 86-107. doi: 10.1016/j.jpowsour.2017.02.054

Huang Z, Li L, Wang Y, et al. Polyaniline/graphene nanocomposites towards high-performance supercapacitors: A review. Composites Communications. 2018; 8: 83-91. doi: 10.1016/j.coco.2017.11.005

Chauhan NPS, Mozafari M, Chundawat NS, et al. High-performance supercapacitors based on polyaniline–graphene nanocomposites: Some approaches, challenges and opportunities. Journal of Industrial and Engineering Chemistry. 2016; 36: 13-29. doi: 10.1016/j.jiec.2016.03.003

Fu L, Qu Q, Holze R, et al. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds? Journal of Materials Chemistry A. 2019; 7(25): 14937-14970. doi: 10.1039/c8ta10587a

Dubal DP, Kim JG, Kim Y, et al. Supercapacitors Based on Flexible Substrates: An Overview. Energy Technology. 2014; 2(4): 325-341. doi: 10.1002/ente.201300144

Ge Y, Liu Z, Wu Y, et al. On the utilization of supercapacitor electrode materials. Electrochimica Acta. 2021; 366: 137390. doi: 10.1016/j.electacta.2020.137390

Kondratiev V, Holze R. Intrinsically Conducting Polymer Binders for Battery Electrodes. Encyclopedia. 2022; 2(4): 1753-1762. doi: 10.3390/encyclopedia2040120

Benoit C, Demeter D, Bélanger D, et al. A Redox‐Active Binder for Electrochemical Capacitor Electrodes. Angewandte Chemie International Edition. 2016; 55(17): 5318-5321. doi: 10.1002/anie.201601395

Van Hoang H, Holze R. Electrochemical Synthesis of Polyaniline/Montmorillonite Nanocomposites and Their Characterization. Chemistry of Materials. 2006; 18(7): 1976-1980. doi: 10.1021/cm052707w

Akinwolemiwa B, Wei C, Chen GZ. Mechanisms and Designs of Asymmetrical Electrochemical Capacitors. Electrochimica Acta. 2017; 247: 344-357. doi: 10.1016/j.electacta.2017.06.088

Guidelli R, Schmickler W. Electrosorption Valency and Partial Charge Transfer, in: Modern Aspects of Electrochemistry 38. In: Kluwer Academic/Plenum Publisher; 2005.

Ragoisha GA, Aniskevich YM. False capacitance of supercapacitors.

Bandeira MCE, Holze R. Impedance measurements at thin polyaniline films – the influence of film morphology. Microchimica Acta. 2006; 156(1-2): 125-131. doi: 10.1007/s00604-006-0586-x

Ko JS, Lai CH, Long JW, et al. Differentiating Double-Layer, Psuedocapacitance, and Battery-like Mechanisms by Analyzing Impedance Measurements in Three Dimensions. ACS Applied Materials & Interfaces. 2020; 12(12): 14071-14078. doi: 10.1021/acsami.0c02020

Gosser Jr. DK. Cyclic Voltammetry. VCH; 1993.

Liu T ‐C., Pell WG, Conway BE, Roberson SL. Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors: Comparison with Ruthenium Oxide. Journal of The Electrochemical Society. 1998; 145(6): 1882-1888. doi: 10.1149/1.1838571

Lindström H, Södergren S, Solbrand A, et al. Li+ Ion Insertion in TiO2 (Anatase). 2. Voltammetry on Nanoporous Films. The Journal of Physical Chemistry B. 1997; 101(39): 7717-7722. doi: 10.1021/jp970490q

Opitz M, Yue J, Wallauer J, et al. Mechanisms of Charge Storage in Nanoparticulate TiO2 and Li4Ti5O12 Anodes: New Insights from Scan rate-dependent Cyclic Voltammetry. Electrochimica Acta. 2015; 168: 125-132. doi: 10.1016/j.electacta.2015.03.186

Forghani M, Donne SW. Method Comparison for Deconvoluting Capacitive and Pseudo-Capacitive Contributions to Electrochemical Capacitor Electrode Behavior. Journal of The Electrochemical Society. 2018; 165(3): A664-A673. doi: 10.1149/2.0931803jes

Dupont MF, Donne SW. Faradaic and Non-Faradaic Contributions to the Power and Energy Characteristics of Electrolytic Manganese Dioxide for Electrochemical Capacitors. Journal of The Electrochemical Society. 2016; 163(6): A888-A897. doi: 10.1149/2.0401606jes

Hall PJ, Mirzaeian M, Fletcher SI, et al. Energy storage in electrochemical capacitors: designing functional materials to improve performance. Energy & Environmental Science. 2010; 3(9): 1238. doi: 10.1039/c0ee00004c

Wang W, Guo S, Lee I, et al. Hydrous Ruthenium Oxide Nanoparticles Anchored to Graphene and Carbon Nanotube Hybrid Foam for Supercapacitors. Scientific Reports. 2014; 4(1). doi: 10.1038/srep04452

Chodankar NR, Pham HD, Nanjundan AK, et al. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small. 2020; 16(37). doi: 10.1002/smll.202002806

Pavlov D. Essentials of Lead-Acid Batteries. SAEST; 2006.

Yu N, Gao L. Electrodeposited PbO2 thin film on Ti electrode for application in hybrid supercapacitor. Electrochemistry Communications. 2009; 11(1): 220-222. doi: 10.1016/j.elecom.2008.11.013

Lam LT, Louey R. Development of ultra-battery for hybrid-electric vehicle applications. Journal of Power Sources. 2006; 158(2): 1140-1148. doi: 10.1016/j.jpowsour.2006.03.022

Akinwolemiwa B, Chen G. Fundamental Consideration for Electrochemical Engineering of Supercapattery. Journal of the Brazilian Chemical Society. Published online 2018. doi: 10.21577/0103-5053.20180010

Yu L, Chen GZ. Supercapatteries as High-Performance Electrochemical Energy Storage Devices. Electrochemical Energy Reviews. 2020; 3(2): 271-285. doi: 10.1007/s41918-020-00063-6

Chen GZ. Supercapacitor and supercapattery as emerging electrochemical energy stores. International Materials Reviews. 2016; 62(4): 173-202. doi: 10.1080/09506608.2016.1240914

Chen GZ. Supercapattery: Merit merge of capacitive and Nernstian charge storage mechanisms. Current Opinion in Electrochemistry. 2020; 21: 358-367. doi: 10.1016/j.coelec.2020.04.002

Laheäär A, Przygocki P, Abbas Q, et al. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochemistry Communications. 2015; 60: 21-25. doi: 10.1016/j.elecom.2015.07.022

Rufer A, Barrade P. A supercapacitor-based energy-storage system for elevators with soft commutated interface. IEEE Transactions on Industry Applications. 2002; 38(5): 1151-1159. doi: 10.1109/tia.2002.803021

Published
2024-03-08
How to Cite
Wu, Y., & Holze, R. (2024). Battery and/or supercapacitor?—On the merger of two electrochemical storage system families. Energy Storage and Conversion, 2(1), 491. https://doi.org/10.59400/esc.v2i1.491
Section
Review