A Mini Review on Electroosmotic Phenomena in Porous Media

  • Yan Gao College of Science, China Jiliang University, Hangzhou 310018, China
  • Chunling Wang College of Science, China Jiliang University, Hangzhou 310018, China
  • Zhuo Gong College of Science, China Jiliang University, Hangzhou 310018, China
  • Zhiqiang Li College of Science, China Jiliang University, Hangzhou 310018, China
Ariticle ID: 480
44 Views, 36 PDF Downloads
Keywords: electroosmosis; porous media; electric double layer; pressure coupling effect; nanoscale

Abstract

Electroosmosis phenomenon in porous media finds widespread applications in various fields such as microfluidic systems, polymer electrolyte membrane fuel cells, oil and gas engineering, wastewater sludge dewatering and groundwater dynamics etc. Therefore, the electroosmotic flow mechanism in porous media have attracted broad interests from multiple disciplines. This paper provides an overview on the physical mechanisms and mathematical models for electroosmosis in porous media. The background of electric double layer theory and state-of-art research progress on pore-scale models for electroosmotic flow through porous media are reviewed. Two typical and significant research topics, electroosmosis under pressure coupling effect and nanoscale electroosmotic phenomena, are then focused on. The advances in theoretical analysis, numerical simulation and experimental measurements are summarized. Finally, the potential research directions for the electroosmotic flow in porous media are addressed out.

References

Delgado AV, González-Caballero F, Hunter RJ, et al. Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science. 2007; 309(2): 194-224. doi: 10.1016/j.jcis.2006.12.075

Reuss FF. On a new effect of galvanic electricity (French). Soc. Imp. Natur. Moscou. 1809; 2: 327-337.

Wiedemann M. On the motion of fluids from the positive to the negative pole of the closed galvanic circuit. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1852; 4(28): 546-547. doi: 10.1080/14786445208647182

Quincke G. About a new type of electric current (German). Annalen der Physik. 1859; 183(5): 1-47. doi: 10.1002/andp.18591830502

Dorn E. On the propagation of electricity through flowing water in pipes and related phenomena (German). Annalen der Physik. 1880; 246(5): 46-77. doi: 10.1002/andp.18802460505

Saunders JH, Jackson MD, Pain CC. Fluid flow monitoring in oil fields using downhole measurements of electrokinetic potential. GEOPHYSICS. 2008; 73(5): E165-E180. doi: 10.1190/1.2959139

Millán M, Bucio-Rodríguez PY, Lobato J, et al. Strategies for powering electrokinetic soil remediation: A way to optimize performance of the environmental technology. Journal of Environmental Management. 2020; 267: 110665. doi: 10.1016/j.jenvman.2020.110665

Dehghan Manshadi MK, Khojasteh D, Mohammadi M, et al. Electroosmotic micropump for lab‐on‐a‐chip biomedical applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 2016; 29(5): 845-858. doi: 10.1002/jnm.2149

Grassia P. Viscous and electro-osmotic effects upon motion of an oil droplet through a capillary. Journal of Fluid Mechanics. 2020; 899. doi: 10.1017/jfm.2020.458

Yang S, Zhang H, Hu Y, et al. Experimental study on remediation of petroleum-contaminated soil by combination of freeze-thaw and electro-osmosis. Environmental Pollution. 2023; 333: 121989. doi: 10.1016/j.envpol.2023.121989

Jiang S, Zhang H, Chen L, et al. Numerical simulation and experimental study of the electroosmotic flow in open microfluidic chip based on super-wettability surface. Colloid and Interface Science Communications. 2021; 45: 100516. doi: 10.1016/j.colcom.2021.100516

Pramod K, Sen AK. Flow and Heat Transfer Analysis of an Electro-Osmotic Flow Micropump for Chip Cooling. Journal of Electronic Packaging. 2014; 136(3). doi: 10.1115/1.4027657

Xu H, Ding T. Influence of vacuum pressure, pH, and potential gradient on the vacuum electro-osmosis dewatering of drinking water treatment sludge. Drying Technology. 2016; 34(9): 1107-1117. doi: 10.1080/07373937.2015.1095203

Zhang R, Miao Q, Deng D, et al. Research progress of advanced microneedle drug delivery system and its application in biomedicine. Colloids and Surfaces B: Biointerfaces. 2023; 226: 113302. doi: 10.1016/j.colsurfb.2023.113302

He Q, Zhao J, Du S, et al. Reverse iontophoresis generated by porous microneedles produces an electroosmotic flow for glucose determination. Talanta. 2024; 267: 125156. doi: 10.1016/j.talanta.2023.125156

Shen V, Rae-Grant T, Mullenbach J, et al. Fluid Reality: High-Resolution, Untethered Haptic Gloves using Electroosmotic Pump Arrays. Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology; 29 October 2023. doi: 10.1145/3586183.3606771

Yuan Y, Abdullah MM, Sajadi SM, et al. Numerical investigation of the effect of changing the geometry of a U-shaped fuel cell channel with asymmetric gas flow and its effect on hydrogen consumption. International Journal of Hydrogen Energy. 2024; 50: 1167-1178. doi: 10.1016/j.ijhydene.2023.10.080

Helmholtz H. Studien über electrische Grenzschichten. Annalen der Physik. 1879; 243(7): 337-382. doi: 10.1002/andp.18792430702

Gouy G. On the Formation of Electrical Charges at the Surface of an Electrolyte. J. physique. 1910; 9: 457-469.

Chapman DL. LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1913; 25(148): 475-481. doi: 10.1080/14786440408634187

Stern A. On the counter-transference in psychoanalysis. The Psychoanalytic Review (1913-1957). 1924; 11: 166.

Rice CL, Whitehead R. Electrokinetic Flow in a Narrow Cylindrical Capillary. The Journal of Physical Chemistry. 1965; 69(11): 4017-4024. doi: 10.1021/j100895a062

Levine S, Marriott J R, Neale G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. Journal of Colloid and Interface Science. 1975; 52(1): 136-149. doi: 10.1016/0021-9797(75)90310-0

Olivares J, Casadesus J, Bedmar EJ. Method for Testing Degree of Infectivity of Rhizobium meliloti Strains. Applied and Environmental Microbiology. 1980; 39(5): 967-970. doi: 10.1128/aem.39.5.967-970.1980

Ohshima H, Kondo T. Electrokinetic flow between two parallel plates with surface charge layers: Electro-osmosis and streaming potential. Journal of colloid and interface science. 1990; 135(2): 443-448. doi: 10.1016/0021-9797(90)90014-f

Mala G M, Li D, Werner C, et al. Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. International journal of heat and fluid flow. 1997; 18(5): 489-496. doi: 10.1016/s0142-727x(97)00032-5

Luong DT, Sprik R. Streaming Potential and Electroosmosis Measurements to Characterize Porous Materials. ISRN Geophysics. 2013; 2013: 1-8. doi: 10.1155/2013/496352

Luo RH, Keh HJ. Electrokinetic flow and electric conduction of salt‐free solutions in a capillary. ELECTROPHORESIS. 2020; 41(16-17): 1503-1508. doi: 10.1002/elps.202000052

Ning K, Wang M, Kulacki FA, et al. Electrokinetic coupling in unsteady pressure-driven flow through a porous transducer: Fractal capillary bundle model. International Journal of Heat and Mass Transfer. 2022; 195: 122764. doi: 10.1016/j.ijheatmasstransfer.2022.122764

Paillat T, Moreau E, Grimaud PO, et al. Electrokinetic phenomena in porous media applied to soil decontamination. IEEE Transactions on Dielectrics and Electrical Insulation. 2000; 7(5): 693-704. doi: 10.1109/94.879363

Wu RC, Papadopoulos KD. Electroosmotic flow through porous media: cylindrical and annular models. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000; 161(3): 469-476. doi: 10.1016/s0927-7757(99)00209-5

Pascal J, Oyanader M, Arce P. Effect of capillary geometry on predicting electroosmotic volumetric flowrates in porous or fibrous media. Journal of Colloid and Interface Science. 2012; 378(1): 241-250. doi: 10.1016/j.jcis.2012.03.061

Bandopadhyay A, DasGupta D, Mitra SK, et al. Electro-osmotic flows through topographically complicated porous media: Role of electropermeability tensor. Physical Review E. 2013; 87(3). doi: 10.1103/physreve.87.033006

Liang M, Yang S, Miao T, et al. Analysis of electroosmotic characters in fractal porous media. Chemical Engineering Science. 2015; 127: 202-209. doi: 10.1016/j.ces.2015.01.030

Thanh LD, Jougnot D, Van Do P, et al. Electroosmotic Coupling in Porous Media, a New Model Based on a Fractal Upscaling Procedure. Transport in Porous Media. 2020; 134(1): 249-274. doi: 10.1007/s11242-020-01444-7

Xu C, Xu Y, Wang J, et al. A Pore-Scale Physical Model for Electric Dewatering of Municipal Sludge Based on Fractal Geometry. Journal of Environmental Engineering. 2023; 149(3). doi: 10.1061/joeedu.eeeng-7089

Vennela N, Bhattacharjee S, De S. Sherwood number in porous microtube due to combined pressure and electroosmotically driven flow. Chemical Engineering Science. 2011; 66(24): 6515-6524. doi: 10.1016/j.ces.2011.09.016

Dutta D. A numerical analysis of nanofluidic charge based separations using a combination of electrokinetic and hydrodynamic flows. Chemical Engineering Science. 2013; 93: 124-130. doi: 10.1016/j.ces.2013.01.062

Kou Z, Dejam M. Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium. Physics of Fluids. 2019; 31(5): 056603. doi: 10.1063/1.5092199

Rosenfeld T, Bercovici M. Dynamic control of capillary flow in porous media by electroosmotic pumping. Lab on a Chip. 2019; 19(2): 328-334. doi: 10.1039/c8lc01077c

Godinez-Brizuela OE, Niasar VJ. Simultaneous pressure and electro-osmosis driven flow in charged porous media: Pore-scale effects on mixing and dispersion. Journal of Colloid and Interface Science. 2020; 561: 162-172. doi: 10.1016/j.jcis.2019.11.084

Terutsuki D, Miyazawa S, Takagi J, et al. Spatiotemporally Controllable Chemical Delivery Utilizing Electroosmotic Flow Generated in Combination of Anionic and Cationic Hydrogels. Advanced Functional Materials. 2023; 34(2). doi: 10.1002/adfm.202304946

Mondal D, Chaube M K. Study on Electroosmotic Transport of Peristaltic Flow in Microchannel. 2024; 13(1). doi:10.9790/1813-13013543

Kobayashi K, Iwata M, Hosoda Y, et al. Fundamental study of electroosmotic flow through perforated membrane. Journal of Chemical Engineering of Japan.1979; 12(6): 466-471. doi: 10.1252/jcej.12.466

Kroger T, Tomiczek A, Wahl F. Towards On-Line Trajectory Computation. 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems; October 2006. doi: 10.1109/iros.2006.282622

Maksimenko A, Ando M, Sugiyama H, et al. A Test of an X-Ray Quatrochrome Interferometer for Simultaneous Observation of Images Due to Dark- and Bright-Field, Phase-Interference and Absorption Contrasts. Japanese Journal of Applied Physics. 2003; 42(Part 2, No.9A/B): L1096-L1099. doi: 10.1143/jjap.42.l1096

Lindken R, Rossi M, Große S, et al. Micro-Particle Image Velocimetry (µPIV): Recent developments, applications, and guidelines. Lab on a Chip. 2009; 9(17): 2551. doi: 10.1039/b906558j

Van de Nesse RJ, Velthorst NH, Brinkman UAT, et al. Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation. Journal of Chromatography A. 1995; 704(1): 1-25. doi: 10.1016/0021-9673(95)00053-p

Šesták J, Moravcová D, Kahle V. Instrument platforms for nano liquid chromatography. Journal of Chromatography A. 2015; 1421: 2-17. doi: 10.1016/j.chroma.2015.07.090

Chen J, Li H, Xie H, et al. A novel method combining aptamer-Ag10NPs based microfluidic biochip with bright field imaging for detection of KPC-2-expressing bacteria. Analytica Chimica Acta. 2020; 1132: 20-27. doi: 10.1016/j.aca.2020.07.061

Wereley ST, Meinhart CD. Recent Advances in Micro-Particle Image Velocimetry. Annual Review of Fluid Mechanics. 2010; 42(1): 557-576. doi: 10.1146/annurev-fluid-121108-145427

Murniati E, Gross D, Herlina H, et al. Oxygen imaging at the sediment‐water interface using lifetime‐based laser induced fluorescence (τLIF) of nano‐sized particles. Limnology and Oceanography: Methods. 2016; 14(8): 506-517. doi: 10.1002/lom3.10108

Marx D, Hutter J. Ab initio molecular dynamics: Theory and implementation. Modern methods and algorithms of quantum chemistry. 2000; 1(301-449): 141.

Kim D, Darve E. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Physical Review E. 2006; 73(5). doi: 10.1103/physreve.73.051203

Zhang C, Lu P, Chen Y. Molecular dynamics simulation of electroosmotic flow in rough nanochannels. International Communications in Heat and Mass Transfer. 2014; 59: 101-105. doi: 10.1016/j.icheatmasstransfer.2014.10.024

Rezaei M, Azimian AR, Semiromi DT. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study. Heat and Mass Transfer. 2014; 51(5): 661-670. doi: 10.1007/s00231-014-1441-y

Gogoi A, Reddy KA, Mondal PK. Electro-osmotic flow through nanochannel with different surface charge configurations: A molecular dynamics simulation study. Physics of Fluids. 2021; 33(9). doi: 10.1063/5.0062031

Dehkordi RB, Toghraie D, Hashemian M, et al. The effects of external force and electrical field on the agglomeration of Fe3O4 nanoparticles in electroosmotic flows in microchannels using molecular dynamics simulation. International Communications in Heat and Mass Transfer. 2021; 122: 105182. doi: 10.1016/j.icheatmasstransfer.2021.105182

Freund JB. Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. The Journal of Chemical Physics. 2002; 116(5): 2194-2200. doi: 10.1063/1.1431543

Lee CA, Teramoto A, Watanabe H. Monte Carlo Simulation of Nanowires Array Biosensor With AC Electroosmosis. IEEE Transactions on Electron Devices. 2018; 65(5): 1932-1938. doi: 10.1109/ted.2018.2812783

Xin Y, Zheng YX, Yu YX. Density functional theory study on ion adsorption and electroosmotic flow in a membrane with charged cylindrical pores. Molecular Physics. 2015; 114(16-17): 2328-2336. doi: 10.1080/00268976.2015.1090637

Marry V, Dufrêche J F, Jardat M, et al. Equilibrium and electrokinetic phenomena in charged porous media from microscopic and mesoscopic models: electro-osmosis in montmorillonite. Molecular Physics. 2003; 101(20): 3111-3119. doi: 10.1080/00268970310001626432

Panwar AS, Kumar S. Brownian dynamics simulations of polymer stretching and transport in a complex electroosmotic flow. The Journal of Chemical Physics. 2003; 118(2): 925-936. doi: 10.1063/1.1523912

Duong-Hong D, Wang JS, Liu GR, et al. Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluidics and Nanofluidics. 2007; 4(3): 219-225. doi: 10.1007/s10404-007-0170-7

Moshfegh A, Jabbarzadeh A. Fully explicit dissipative particle dynamics simulation of electroosmotic flow in nanochannels. Microfluidics and Nanofluidics. 2016; 20(4). doi: 10.1007/s10404-016-1733-2

Smiatek J, Schmid F. Mesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels. Computer Physics Communications. 2011; 182(9): 1941-1944. doi: 10.1016/j.cpc.2010.11.021

Published
2024-04-02
How to Cite
Gao, Y., Wang, C., Gong, Z., & Li, Z. (2024). A Mini Review on Electroosmotic Phenomena in Porous Media. Energy Storage and Conversion, 2(1), 480. https://doi.org/10.59400/esc.v2i1.480
Section
Review