A Mini Review on Electroosmotic Phenomena in Porous Media
Abstract
The electroosmosis phenomenon in porous media finds widespread applications in various fields such as microfluidic systems, polymer electrolyte membrane fuel cells, oil and gas engineering, wastewater sludge dewatering, groundwater dynamics, etc. Therefore, the electroosmotic flow mechanism in porous media has attracted broad interest from multiple disciplines. This paper provides an overview of the physical mechanisms and mathematical models for electroosmosis in porous media. The background of electric double layer theory and state-of-the-art research progress on pore-scale models for electroosmotic flow through porous media are reviewed. Two typical and significant research topics, electroosmosis under pressure coupling effects and nanoscale electroosmotic phenomena, are then focused on. The advances in theoretical analysis, numerical simulation, and experimental measurements are summarized. Finally, the potential research directions for electroosmotic flow in porous media are addressed.
References
[1] Delgado AV, González-Caballero F, Hunter RJ, et al. Measurement and interpretation of electrokinetic phenomena. Journal of Colloid and Interface Science. 2007; 309(2): 194-224. doi: 10.1016/j.jcis.2006.12.075
[2] Reuss FF. On a new effect of galvanic electricity (French). Soc. Imp. Natur. Moscou. 1809; 2: 327-337.
[3] Wiedemann M. On the motion of fluids from the positive to the negative pole of the closed galvanic circuit. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1852; 4(28): 546-547. doi: 10.1080/14786445208647182
[4] Quincke G. About a new type of electric current (German). Annalen der Physik. 1859; 183(5): 1-47. doi: 10.1002/andp.18591830502
[5] Dorn E. On the propagation of electricity through flowing water in pipes and related phenomena (German). Annalen der Physik. 1880; 246(5): 46-77. doi: 10.1002/andp.18802460505
[6] Saunders JH, Jackson MD, Pain CC. Fluid flow monitoring in oil fields using downhole measurements of electrokinetic potential. Geophysics. 2008; 73(5): E165-E180. doi: 10.1190/1.2959139
[7] Millán M, Bucio-Rodríguez PY, Lobato J, et al. Strategies for powering electrokinetic soil remediation: A way to optimize performance of the environmental technology. Journal of Environmental Management. 2020; 267: 110665. doi: 10.1016/j.jenvman.2020.110665
[8] Dehghan Manshadi MK, Khojasteh D, Mohammadi M, et al. Electroosmotic micropump for lab‐on‐a‐chip biomedical applications. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields. 2016; 29(5): 845-858. doi: 10.1002/jnm.2149
[9] Grassia P. Viscous and electro-osmotic effects upon motion of an oil droplet through a capillary. Journal of Fluid Mechanics. 2020; 899. doi: 10.1017/jfm.2020.458
[10] Yang S, Zhang H, Hu Y, et al. Experimental study on remediation of petroleum-contaminated soil by combination of freeze-thaw and electro-osmosis. Environmental Pollution. 2023; 333: 121989. doi: 10.1016/j.envpol.2023.121989
[11] Jiang S, Zhang H, Chen L, et al. Numerical simulation and experimental study of the electroosmotic flow in open microfluidic chip based on super-wettability surface. Colloid and Interface Science Communications. 2021; 45: 100516. doi: 10.1016/j.colcom.2021.100516
[12] Pramod K, Sen AK. Flow and Heat Transfer Analysis of an Electro-Osmotic Flow Micropump for Chip Cooling. Journal of Electronic Packaging. 2014; 136(3). doi: 10.1115/1.4027657
[13] Xu H, Ding T. Influence of vacuum pressure, pH, and potential gradient on the vacuum electro-osmosis dewatering of drinking water treatment sludge. Drying Technology. 2016; 34(9): 1107-1117. doi: 10.1080/07373937.2015.1095203
[14] Zhang R, Miao Q, Deng D, et al. Research progress of advanced microneedle drug delivery system and its application in biomedicine. Colloids and Surfaces B: Biointerfaces. 2023; 226: 113302. doi: 10.1016/j.colsurfb.2023.113302
[15] He Q, Zhao J, Du S, et al. Reverse iontophoresis generated by porous microneedles produces an electroosmotic flow for glucose determination. Talanta. 2024; 267: 125156. doi: 10.1016/j.talanta.2023.125156
[16] Shen V, Rae-Grant T, Mullenbach J, et al. Fluid Reality: High-Resolution, Untethered Haptic Gloves using Electroosmotic Pump Arrays. In: Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology; 29 October-1 November 2023; San Francisco, CA, USA. pp. 1-20. doi: 10.1145/3586183.3606771
[17] Yuan Y, Abdullah MM, Sajadi SM, et al. Numerical investigation of the effect of changing the geometry of a U-shaped fuel cell channel with asymmetric gas flow and its effect on hydrogen consumption. International Journal of Hydrogen Energy. 2024; 50: 1167-1178. doi: 10.1016/j.ijhydene.2023.10.080
[18] Helmholtz H. Studies on electrical interfaces (German). Annalen der Physik. 1879; 243(7): 337-382. doi: 10.1002/andp.18792430702
[19] Gouy G. On the Formation of Electrical Charges at the Surface of an Electrolyte. J. physique. 1910; 9: 457-469.
[20] Chapman DL. LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1913; 25(148): 475-481. doi: 10.1080/14786440408634187
[21] Stern A. On the counter-transference in psychoanalysis. The Psychoanalytic Review (1913-1957). 1924; 11: 166.
[22] Rice CL, Whitehead R. Electrokinetic Flow in a Narrow Cylindrical Capillary. The Journal of Physical Chemistry. 1965; 69(11): 4017-4024. doi: 10.1021/j100895a062
[23] Levine S, Marriott J R, Neale G, et al. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials. Journal of Colloid and Interface Science. 1975; 52(1): 136-149. doi: 10.1016/0021-9797(75)90310-0
[24] Olivares J, Casadesus J, Bedmar EJ. Method for Testing Degree of Infectivity of Rhizobium meliloti Strains. Applied and Environmental Microbiology. 1980; 39(5): 967-970. doi: 10.1128/aem.39.5.967-970.1980
[25] Ohshima H, Kondo T. Electrokinetic flow between two parallel plates with surface charge layers: Electro-osmosis and streaming potential. Journal of colloid and interface science. 1990; 135(2): 443-448. doi: 10.1016/0021-9797(90)90014-f
[26] Mala G M, Li D, Werner C, et al. Flow characteristics of water through a microchannel between two parallel plates with electrokinetic effects. International journal of heat and fluid flow. 1997; 18(5): 489-496. doi: 10.1016/s0142-727x(97)00032-5
[27] Luong DT, Sprik R. Streaming Potential and Electroosmosis Measurements to Characterize Porous Materials. ISRN Geophysics. 2013; 2013: 1-8. doi: 10.1155/2013/496352
[28] Luo RH, Keh HJ. Electrokinetic flow and electric conduction of salt‐free solutions in a capillary. Electrophoresis. 2020; 41(16-17): 1503-1508. doi: 10.1002/elps.202000052
[29] Ning K, Wang M, Kulacki FA, et al. Electrokinetic coupling in unsteady pressure-driven flow through a porous transducer: Fractal capillary bundle model. International Journal of Heat and Mass Transfer. 2022; 195: 122764. doi: 10.1016/j.ijheatmasstransfer.2022.122764
[30] Paillat T, Moreau E, Grimaud PO, et al. Electrokinetic phenomena in porous media applied to soil decontamination. IEEE Transactions on Dielectrics and Electrical Insulation. 2000; 7(5): 693-704. doi: 10.1109/94.879363
[31] Wu RC, Papadopoulos KD. Electroosmotic flow through porous media: cylindrical and annular models. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2000; 161(3): 469-476. doi: 10.1016/s0927-7757(99)00209-5
[32] Pascal J, Oyanader M, Arce P. Effect of capillary geometry on predicting electroosmotic volumetric flowrates in porous or fibrous media. Journal of Colloid and Interface Science. 2012; 378(1): 241-250. doi: 10.1016/j.jcis.2012.03.061
[33] Bandopadhyay A, DasGupta D, Mitra SK, et al. Electro-osmotic flows through topographically complicated porous media: Role of electropermeability tensor. Physical Review E. 2013; 87(3). doi: 10.1103/physreve.87.033006
[34] Liang M, Yang S, Miao T, et al. Analysis of electroosmotic characters in fractal porous media. Chemical Engineering Science. 2015; 127: 202-209. doi: 10.1016/j.ces.2015.01.030
[35] Thanh LD, Jougnot D, Van Do P, et al. Electroosmotic Coupling in Porous Media, a New Model Based on a Fractal Upscaling Procedure. Transport in Porous Media. 2020; 134(1): 249-274. doi: 10.1007/s11242-020-01444-7
[36] Xu C, Xu Y, Wang J, et al. A Pore-Scale Physical Model for Electric Dewatering of Municipal Sludge Based on Fractal Geometry. Journal of Environmental Engineering. 2023; 149(3). doi: 10.1061/joeedu.eeeng-7089
[37] Vennela N, Bhattacharjee S, De S. Sherwood number in porous microtube due to combined pressure and electroosmotically driven flow. Chemical Engineering Science. 2011; 66(24): 6515-6524. doi: 10.1016/j.ces.2011.09.016
[38] Dutta D. A numerical analysis of nanofluidic charge based separations using a combination of electrokinetic and hydrodynamic flows. Chemical Engineering Science. 2013; 93: 124-130. doi: 10.1016/j.ces.2013.01.062
[39] Kou Z, Dejam M. Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium. Physics of Fluids. 2019; 31(5): 056603. doi: 10.1063/1.5092199
[40] Rosenfeld T, Bercovici M. Dynamic control of capillary flow in porous media by electroosmotic pumping. Lab on a Chip. 2019; 19(2): 328-334. doi: 10.1039/c8lc01077c
[41] Godinez-Brizuela OE, Niasar VJ. Simultaneous pressure and electro-osmosis driven flow in charged porous media: Pore-scale effects on mixing and dispersion. Journal of Colloid and Interface Science. 2020; 561: 162-172. doi: 10.1016/j.jcis.2019.11.084
[42] Terutsuki D, Miyazawa S, Takagi J, et al. Spatiotemporally Controllable Chemical Delivery Utilizing Electroosmotic Flow Generated in Combination of Anionic and Cationic Hydrogels. Advanced Functional Materials. 2023; 34(2). doi: 10.1002/adfm.202304946
[43] Mondal D, Chaube M K. Study on Electroosmotic Transport of Peristaltic Flow in Microchannel. 2024; 13(1). doi:10.9790/1813-13013543
[44] Kobayashi K, Iwata M, Hosoda Y, et al. Fundamental study of electroosmotic flow through perforated membrane. Journal of Chemical Engineering of Japan.1979; 12(6): 466-471. doi: 10.1252/jcej.12.466
[45] Kroger T, Tomiczek A, Wahl F. Towards On-Line Trajectory Computation. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems; 9-15 October 2006; Beijing, China. pp. 736-741. doi: 10.1109/iros.2006.282622
[46] Maksimenko A, Ando M, Sugiyama H, et al. A Test of an X-Ray Quatrochrome Interferometer for Simultaneous Observation of Images Due to Dark- and Bright-Field, Phase-Interference and Absorption Contrasts. Japanese Journal of Applied Physics. 2003; 42(Part 2, No.9A/B): L1096-L1099. doi: 10.1143/jjap.42.l1096
[47] Lindken R, Rossi M, Große S, et al. Micro-Particle Image Velocimetry (µPIV): Recent developments, applications, and guidelines. Lab on a Chip. 2009; 9(17): 2551. doi: 10.1039/b906558j
[48] Van de Nesse RJ, Velthorst NH, Brinkman UAT, et al. Laser-induced fluorescence detection of native-fluorescent analytes in column liquid chromatography, a critical evaluation. Journal of Chromatography A. 1995; 704(1): 1-25. doi: 10.1016/0021-9673(95)00053-p
[49] Šesták J, Moravcová D, Kahle V. Instrument platforms for nano liquid chromatography. Journal of Chromatography A. 2015; 1421: 2-17. doi: 10.1016/j.chroma.2015.07.090
[50] Chen J, Li H, Xie H, et al. A novel method combining aptamer-Ag10NPs based microfluidic biochip with bright field imaging for detection of KPC-2-expressing bacteria. Analytica Chimica Acta. 2020; 1132: 20-27. doi: 10.1016/j.aca.2020.07.061
[51] Wereley ST, Meinhart CD. Recent Advances in Micro-Particle Image Velocimetry. Annual Review of Fluid Mechanics. 2010; 42(1): 557-576. doi: 10.1146/annurev-fluid-121108-145427
[52] Murniati E, Gross D, Herlina H, et al. Oxygen imaging at the sediment‐water interface using lifetime‐based laser induced fluorescence (τLIF) of nano‐sized particles. Limnology and Oceanography: Methods. 2016; 14(8): 506-517. doi: 10.1002/lom3.10108
[53] Marx D, Hutter J. Ab initio molecular dynamics: Theory and implementation. Modern methods and algorithms of quantum chemistry. 2000; 1(301-449): 141.
[54] Kim D, Darve E. Molecular dynamics simulation of electro-osmotic flows in rough wall nanochannels. Physical Review E. 2006; 73(5). doi: 10.1103/physreve.73.051203
[55] Zhang C, Lu P, Chen Y. Molecular dynamics simulation of electroosmotic flow in rough nanochannels. International Communications in Heat and Mass Transfer. 2014; 59: 101-105. doi: 10.1016/j.icheatmasstransfer.2014.10.024
[56] Rezaei M, Azimian AR, Semiromi DT. The surface charge density effect on the electro-osmotic flow in a nanochannel: a molecular dynamics study. Heat and Mass Transfer. 2014; 51(5): 661-670. doi: 10.1007/s00231-014-1441-y
[57] Gogoi A, Reddy KA, Mondal PK. Electro-osmotic flow through nanochannel with different surface charge configurations: A molecular dynamics simulation study. Physics of Fluids. 2021; 33(9). doi: 10.1063/5.0062031
[58] Dehkordi RB, Toghraie D, Hashemian M, et al. The effects of external force and electrical field on the agglomeration of Fe3O4 nanoparticles in electroosmotic flows in microchannels using molecular dynamics simulation. International Communications in Heat and Mass Transfer. 2021; 122: 105182. doi: 10.1016/j.icheatmasstransfer.2021.105182
[59] Freund JB. Electro-osmosis in a nanometer-scale channel studied by atomistic simulation. The Journal of Chemical Physics. 2002; 116(5): 2194-2200. doi: 10.1063/1.1431543
[60] Lee CA, Teramoto A, Watanabe H. Monte Carlo Simulation of Nanowires Array Biosensor with AC Electroosmosis. IEEE Transactions on Electron Devices. 2018; 65(5): 1932-1938. doi: 10.1109/ted.2018.2812783
[61] Xin Y, Zheng YX, Yu YX. Density functional theory study on ion adsorption and electroosmotic flow in a membrane with charged cylindrical pores. Molecular Physics. 2015; 114(16-17): 2328-2336. doi: 10.1080/00268976.2015.1090637
[62] Marry V, Dufrêche J F, Jardat M, et al. Equilibrium and electrokinetic phenomena in charged porous media from microscopic and mesoscopic models: electro-osmosis in montmorillonite. Molecular Physics. 2003; 101(20): 3111-3119. doi: 10.1080/00268970310001626432
[63] Panwar AS, Kumar S. Brownian dynamics simulations of polymer stretching and transport in a complex electroosmotic flow. The Journal of Chemical Physics. 2003; 118(2): 925-936. doi: 10.1063/1.1523912
[64] Duong-Hong D, Wang JS, Liu GR, et al. Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluidics and Nanofluidics. 2007; 4(3): 219-225. doi: 10.1007/s10404-007-0170-7
[65] Moshfegh A, Jabbarzadeh A. Fully explicit dissipative particle dynamics simulation of electroosmotic flow in nanochannels. Microfluidics and Nanofluidics. 2016; 20(4). doi: 10.1007/s10404-016-1733-2
[66] Smiatek J, Schmid F. Mesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels. Computer Physics Communications. 2011; 182(9): 1941-1944. doi: 10.1016/j.cpc.2010.11.021
Copyright (c) 2024 Yan Gao, Chunling Wang, Zhuo Gong, Zhiqiang Li
This work is licensed under a Creative Commons Attribution 4.0 International License.