Experimental exploration of nano-phase change material composites for thermal management in Lithium-ion batteries
Abstract
The present study reports an experimental investigation carried out for the thermal management of cylindrical lithium-ion battery simulators using aluminum oxide (nano particle)-eicosane (phase change material) composites. The experiment involves varying the power input from 4 to 10 W in 2 W increments and adjusting the weight percentage of nanoparticles (wt%) from 0.5 to 0.9 in 0.2 wt% intervals. The examination of battery temperature evolutions in response to heating power, a comprehensive heat transfer analysis incorporating the Nusselt number, the determination of the maximum temperature difference, thermal resistance analysis, and the exploration of temperature variations in the absence of Phase Change Material (PCM) are considered. The results show that an increase in the weight percentage of alumina nanoparticles in phase-change material cannot always improve the thermal performance. The results of the present study give guidelines for designing battery thermal management systems. The power levels used in the experiment vary from 4 W to 10 W in steps of 2 W. For a power level of 4 W, the heat flux is 1.088 kW/m2, and for a power level of 10 W, the heat flux is 2.72 kW/m2.
References
[1]Khlissa F, Mhadhbi M, Aich W, et al. Recent Advances in Nanoencapsulated and Nano-Enhanced Phase-Change Materials for Thermal Energy Storage: A Review. Processes. 2023; 11(11): 3219. doi: 10.3390/pr11113219
[2]Arshad A, Ali HM, Yan WM, et al. An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material. Applied Thermal Engineering. 2018; 132: 52-66. doi: 10.1016/j.applthermaleng.2017.12.066
[3]Wang Z, Zhang H, Xia X. Experimental investigation on the thermal behavior of cylindrical battery with composite paraffin and fin structure. International Journal of Heat and Mass Transfer. 2017; 109: 958-970. doi: 10.1016/j.ijheatmasstransfer.2017.02.057
[4]Hussain A, Abidi IH, Tso CY, et al. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. International Journal of Thermal Sciences. 2018; 124: 23-35. doi: 10.1016/j.ijthermalsci.2017.09.019
[5]Babapoor A, Azizi M, Karimi G. Thermal management of a Li-ion battery using carbon fiber-PCM composites. Applied Thermal Engineering. 2015; 82: 281-290. doi: 10.1016/j.applthermaleng.2015.02.068
[6]Situ W, Zhang G, Li X, et al. A thermal management system for rectangular LiFePO4 battery module using novel double copper mesh-enhanced phase change material plates. Energy. 2017; 141: 613-623. doi: 10.1016/j.energy.2017.09.083
[7]Karimi G, Azizi M, Babapoor A. Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites. Journal of Energy Storage. 2016; 8: 168-174. doi: 10.1016/j.est.2016.08.005
[8]Pan M, Lai W. Cutting copper fiber/paraffin composite phase change material discharging experimental study based on heat dissipation capability of Li-ion battery. Renewable Energy. 2017; 114: 408-422. doi: 10.1016/j.renene.2017.07.004
[9]Wang Z, Zhang Z, Jia L, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery. Applied Thermal Engineering. 2015; 78: 428-436. doi: 10.1016/j.applthermaleng.2015.01.009
[10]Ling Z, Wen X, Zhang Z, et al. Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures. Energy. 2018; 144: 977-983. doi: 10.1016/j.energy.2017.12.098
[11]Hussain A, Tso CY, Chao CYH. Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite. Energy. 2016; 115: 209-218. doi: 10.1016/j.energy.2016.09.008
[12]Bai F, Chen M, Song W, et al. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source. Applied Thermal Engineering. 2017; 126: 17-27. doi: 10.1016/j.applthermaleng.2017.07.141
[13]Rao Z, Qian Z, Kuang Y, et al. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Applied Thermal Engineering. 2017; 123: 1514-1522. doi: 10.1016/j.applthermaleng.2017.06.059
[14]Wu W, Wu W, Wang S. Thermal optimization of composite PCM based large-format lithium-ion battery modules under extreme operating conditions. Energy Conversion and Management. 2017; 153: 22-33. doi: 10.1016/j.enconman.2017.09.068
[15]Alipanah M, Li X. Numerical studies of lithium-ion battery thermal management systems using phase change materials and metal foams. International Journal of Heat and Mass Transfer. 2016; 102: 1159-1168. doi: 10.1016/j.ijheatmasstransfer.2016.07.010
[16]Jiang G, Huang J, Liu M, et al. Experiment and simulation of thermal management for a tube-shell Li-ion battery pack with composite phase change material. Applied Thermal Engineering. 2017; 120: 1-9. doi: 10.1016/j.applthermaleng.2017.03.107
[17]Zhao R, Gu J, Liu J. Optimization of a phase change material based internal cooling system for cylindrical Li-ion battery pack and a hybrid cooling design. Energy. 2017; 135: 811-822. doi: 10.1016/j.energy.2017.06.168
[18]Lazrak A, Fourmigué JF, Robin JF. An innovative practical battery thermal management system based on phase change materials: Numerical and experimental investigations. Applied Thermal Engineering. 2018; 128: 20-32. doi: 10.1016/j.applthermaleng.2017.08.172
[19]Babu Sanker S, Baby R. Phase change material based thermal management of lithium ion batteries: A review on thermal performance of various thermal conductivity enhancers. Journal of Energy Storage. 2022; 50: 104606. doi: 10.1016/j.est.2022.104606
[20]Liu C, Wu Y, Li D, et al. Investigation of thermal and optical performance of a phase change material–filled double-glazing unit. Journal of Building Physics. 2017; 42(2): 99-119. doi: 10.1177/1744259117708734
[21]Li D, Li Z, Zheng Y, et al. Thermal performance of a PCM-filled double-glazing unit with different thermophysical parameters of PCM. Solar Energy. 2016; 133: 207-220. doi: 10.1016/j.solener.2016.03.039
[22]Salih SM, Alsabery AI, Hussein AK, et al. Melting control of phase change material of semi-cylinders inside a horizontal baffled channel: Convective laminar fluid–structure interaction. Journal of Energy Storage. 2023; 58: 106312. doi: 10.1016/j.est.2022.106312
[23]Chen H, Abidi A, Hussein AK, et al. Investigation of the use of extended surfaces in paraffin wax phase change material in thermal management of a cylindrical lithium-ion battery: Applicable in the aerospace industry. Journal of Energy Storage. 2022; 45: 103685. doi: 10.1016/j.est.2021.103685
[24]Ruhani B, Abidi A, Hussein AK, et al. Numerical simulation of the effect of battery distance and inlet and outlet length on the cooling of cylindrical lithium-ion batteries and overall performance of thermal management system. Journal of Energy Storage. 2022; 45: 103714. doi: 10.1016/j.est.2021.103714
[25]Rashid FL, Al-Obaidi MA, Dhaidan NS, et al. Bio-based phase change materials for thermal energy storage and release: A review. Journal of Energy Storage. 2023; 73: 109219. doi: 10.1016/j.est.2023.109219
[26]Kolsi L, Hussein AK, Hassen W, et al. Numerical Study of a Phase Change Material Energy Storage Tank Working with Carbon Nanotube–Water Nanofluid under Ha’il City Climatic Conditions. Mathematics. 2023; 11(4): 1057. doi: 10.3390/math11041057
[27]Radhakrishnan N, Thomas S, Sobhan CB. Characterization of thermophysical properties of nano-enhanced organic phase change materials using T-history method. Journal of Thermal Analysis and Calorimetry. 2019; 140(5): 2471-2484. doi: 10.1007/s10973-019-08976-1
[28]Kothari R, Sahu SK, Kundalwal SI. Investigation on thermal characteristics of nano enhanced phase change material based finned and unfinned heat sinks for thermal management system. Chemical Engineering and Processing - Process Intensification. 2021; 162: 108328. doi: 10.1016/j.cep.2021.108328
Copyright (c) 2024 Vishnu M., Anooplal B., Rajesh Baby
This work is licensed under a Creative Commons Attribution 4.0 International License.