A review on MXene (Ti3C2Tx) composites with varied sizes of carbon for supercapacitor applications

  • Ruby Garg Independent Researcher, Cornelius, OR 97113, USA
Article ID: 1920
Keywords: capacitive energy storage; MXene/carbon composites; supercapacitors; synthesis process

Abstract

MXenes belongs to a family of two‐dimensional (2D) layered transition metal carbides or nitrides which shows outstanding potential for various energy storage applications because of their high‐specific surface area, phenomenal electrical conductivity, outstanding hydrophilicity, and variable terminations. Of these different types of MXenes, the most widely studied member is Ti3C2Tx especially in supercapacitors (SCs). However, due to the problem of stacking and oxidation in MXene sheets, significant loss of electrochemically active sites happens. To overcome these issues, incorporation of carbon materials is carried out into MXenes for enhancing its electrochemical performance. This review aims to introduce various common strategies employed in synthesizing Ti3C2Tx, followed by a brief overview of latest developments in fabricating Ti3C2Tx/carbon electrode materials for SCs. The composition of Ti3C2Tx/carbon are summarized based on different dimensions of carbons, such as 0D carbon dots, 1D carbon nanotubes and fibers, 2D graphene, and 3D carbon materials (activated carbon, polymer‐derived carbon, etc.). Further, this review also aims in highlighting several insights on fabrication of novel MXenes/carbon composites as electrodes for application in SCs.

References

[1]Verma S, Arya S, Gupta V, et al. Performance analysis, challenges and future perspectives of nickel based nanostructured electrodes for electrochemical supercapacitors. Journal of Materials Research and Technology. 2021; 11: 564–599. doi: 10.1016/j.jmrt.2021.01.027

[2]Miao L, Song Z, Zhu D, et al. Recent advances in carbon-based supercapacitors. Materials Advances. 2020; 1(5): 945–966. doi: 10.1039/d0ma00384k

[3]Huang J, Lu X, Sun T, et al. Boosting High-Voltage Dynamics Towards High‐Energy‐Density Lithium‐Ion Capacitors. Energy & Environmental Materials. 2023; 6(4). doi: 10.1002/eem2.12505

[4]Wei C, Fei H, Tian Y, et al. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Materials. 2020; 26: 223–233. doi: 10.1016/j.ensm.2020.01.005

[5]Wei C, Xi B, Wang P, et al. In Situ Anchoring Ultrafine ZnS Nanodots on 2D MXene Nanosheets for Accelerating Polysulfide Redox and Regulating Li Plating. Advanced Materials. 2023; 35(32). doi: 10.1002/adma.202303780

[6]Ding J, He D, Du P, et al. Design Photocatalysts to Boost Carrier Dynamics in Plastics Photoconversion into Fuels. ACS Applied Materials & Interfaces. 2024; 16(28): 35865-35873. doi: 10.1021/acsami.4c07664

[7]N RY, Sharma K, Shafi PM. An overview, methods of synthesis and modification of carbon-based electrodes for supercapacitor. Journal of Energy Storage. 2022; 55: 105727. doi: 10.1016/j.est.2022.105727

[8]Raj B, Padhy A, Basu S, et al. Review—Futuristic Direction for R&D Challenges to Develop 2D Advanced Materials Based Supercapacitors. Journal of The Electrochemical Society. 2020; 167(13): 136501. doi: 10.1149/1945-7111/abb40d

[9]Jiang Q, Kurra N, Alhabeb M, et al. All Pseudocapacitive MXene‐RuO2 Asymmetric Supercapacitors. Advanced Energy Materials. 2018; 8(13). doi: 10.1002/aenm.201703043

[10]Wang Y, Chu X, Zhang H, et al. Hyper-conjugated polyaniline delivering extraordinary electrical and electrochemical properties in supercapacitors. Applied Surface Science. 2023; 628: 157350. doi: 10.1016/j.apsusc.2023.157350

[11]Abbas Q, Mirzaeian M, Hunt MRC, et al. Current State and Future Prospects for Electrochemical Energy Storage and Conversion Systems. Energies. 2020; 13(21): 5847. doi: 10.3390/en13215847

[12]Navarro G, Torres J, Blanco M, et al. Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications. Energies. 2021; 14(11): 3060. doi: 10.3390/en14113060

[13]Khalid M. A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids. Energies. 2019; 12(23): 4559. doi: 10.3390/en12234559

[14]Kasprzak D, Mayorga-Martinez CC, Pumera M. Sustainable and Flexible Energy Storage Devices: A Review. Energy & Fuels. 2022; 37(1): 74–97. doi: 10.1021/acs.energyfuels.2c03217

[15]Shao Y, El-Kady MF, Sun J, et al. Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews. 2018; 118(18): 9233–9280. doi: 10.1021/acs.chemrev.8b00252

[16]Garg R, Agarwal A, Agarwal M. A review on MXene for energy storage application: effect of interlayer distance. Materials Research Express. 2020; 7(2): 022001. doi: 10.1088/2053-1591/ab750d

[17]Zhai Z, Zhang L, Du T, et al. A review of carbon materials for supercapacitors. Materials & Design. 2022; 221: 111017. doi: 10.1016/j.matdes.2022.111017

[18]Zhou Q, Yao H. Recent development of carbon electrode materials for electrochemical supercapacitors. Energy Reports. 2022; 8: 656–661. doi: 10.1016/j.egyr.2022.09.167

[19]Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials. 2008; 7(11): 845–854. doi: 10.1038/nmat2297

[20]Boota M, Gogotsi Y. MXene—Conducting Polymer Asymmetric Pseudocapacitors. Advanced Energy Materials. 2018; 9(7). doi: 10.1002/aenm.201802917

[21]Gan Z, Yin J, Xu X, et al. Nanostructure and advanced energy storage: elaborate material designs lead to high-rate pseudocapacitive ion storage. ACS Nano. 2022; 16(4): 5131–5152.

[22]Jiang X, Chu X, Zhang X, et al. Surplus charge injection enables high-cell-potential stable 2D polyaniline supercapacitors. Electrochim Acta. 2023; 445: 142052.

[23]Garg R, Agarwal A, Agarwal M. Performance of copper sulfide hollow rods in a supercapacitor based on flexible substrates. Journal of Electronic Materials. 2021; 50: 6974–6980.

[24]Kumar S, Saeed G, Zhu L, et al. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review. Chemical Engineering Journal. 2021; 403: 126352.

[25]Jiang Y, Liu J. Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials. 2019; 2(1): 30–37.

[26]Liu Y, Jiang SP, Shao Z. Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Materials Today Advances. 2020; 7: 100072. doi: 10.1016/j.mtadv.2020.100072

[27]Li J, Wang H, Xiao X. Intercalation in Two‐Dimensional Transition Metal Carbides and Nitrides (MXenes) toward Electrochemical Capacitor and Beyond. Energy & Environmental Materials. 2020; 3(3): 306–322. doi: 10.1002/eem2.12090

[28]Muzaffar A, Ahamed MB, Deshmukh K, et al. A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Reviews. 2019; 101: 123–145. doi: 10.1016/j.rser.2018.10.026

[29]Zuo W, Li R, Zhou C, et al. Battery‐Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science. 2017; 4(7). doi: 10.1002/advs.201600539

[30]Shi Y, Liu G, Jin R, et al. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review. Carbon Energy. 2019; 1(2): 253–275. doi: 10.1002/cey2.19

[31]Huang S, Zhu X, Sarkar S, et al. Challenges and opportunities for supercapacitors. APL Materials. 2019; 7(10). doi: 10.1063/1.5116146

[32]Baig MM, Gul IH, Baig SM, et al. 2D MXenes: Synthesis, properties, and electrochemical energy storage for supercapacitors—A review. Journal of Electroanalytical Chemistry. 2022; 904: 115920. doi: 10.1016/j.jelechem.2021.115920

[33]Garg R, Agarwal A, Agarwal M. Effect of vanadium doping on MXene-based supercapacitor. Journal of Materials Science: Materials in Electronics. 2021; 32(17): 22046–22059. doi: 10.1007/s10854-021-06668-x

[34]Venkateshalu S, Grace AN. MXenes—A new class of 2D layered materials: Synthesis, properties, applications as supercapacitor electrode and beyond. Applied Materials Today. 2020; 18: 100509. doi: 10.1016/j.apmt.2019.100509

[35]Zhu Q, Li J, Simon P, et al. Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Materials. 2021; 35: 630–660. doi: 10.1016/j.ensm.2020.11.035

[36]Wang Y, Wang Y. Recent progress in MXene layers materials for supercapacitors: High‐performance electrodes. SmartMat. 2022; 4(1). doi: 10.1002/smm2.1130

[37]Wei Y, Zhang P, Soomro RA, et al. Advances in the Synthesis of 2D MXenes. Advanced Materials. 2021; 33(39). doi: 10.1002/adma.202103148

[38]Garg R, Agarwal M. MXene: A new revolution in the world of 2-D materials. Energy Storage and Conversion. 2024; 2(4): 1613. doi: 10.59400/esc1613

[39]Wang Z, Xu Z, Huang H, et al. Unraveling and Regulating Self-Discharge Behavior of Ti3C2Tx MXene-Based Supercapacitors. ACS Nano. 2020; 14(4): 4916–4924. doi: 10.1021/acsnano.0c01056

[40]Wei C, Tao Y, An Y, et al. Recent Advances of Emerging 2D MXene for Stable and Dendrite‐Free Metal Anodes. Advanced Functional Materials. 2020; 30(45). doi: 10.1002/adfm.202004613

[41]Zhang C, Ma Y, Zhang X, et al. Two‐Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy & Environmental Materials. 2019; 3(1): 29–55. doi: 10.1002/eem2.12058

[42]Chen Y, Yang H, Han Z, et al. MXene-Based Electrodes for Supercapacitor Energy Storage. Energy & Fuels. 2022; 36(5): 2390–2406. doi: 10.1021/acs.energyfuels.1c04104

[43]Gogotsi Y, Huang Q. MXenes: Two-Dimensional Building Blocks for Future Materials and Devices. ACS Nano. 2021; 15(4): 5775–5780. doi: 10.1021/acsnano.1c03161

[44]Jiang X, Wu X, Xie Y, et al. Additive Engineering Enables Ionic-Liquid Electrolyte-Based Supercapacitors to Deliver Simultaneously High Energy and Power Density. ACS Sustainable Chemistry & Engineering. 2023; 11(14): 5685–5695. doi: 10.1021/acssuschemeng.3c00213

[45]Tian Y, Yang C, Luo Y, et al. Understanding MXene-Based “Symmetric” Supercapacitors and Redox Electrolyte Energy Storage. ACS Applied Energy Materials. 2020; 3(5): 5006–5014. doi: 10.1021/acsaem.0c00527

[46]Tang X, Guo X, Wu W, et al. 2D Metal Carbides and Nitrides (MXenes) as High‐Performance Electrode Materials for Lithium‐Based Batteries. Advanced Energy Materials. 2018; 8(33). doi: 10.1002/aenm.201801897

[47]Naguib M, Mochalin VN, Barsoum MW, et al. 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials. Advanced Materials. 2013; 26(7): 992–1005. doi: 10.1002/adma.201304138

[48]Feng A, Yu Y, Wang Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Materials & Design. 2017; 114: 161–166. doi: 10.1016/j.matdes.2016.10.053

[49]Li Y, Deng Y, Zhang J, et al. Tunable energy storage capacity of two-dimensional Ti3C2Txmodified by a facile two-step pillaring strategy for high performance supercapacitor electrodes. Nanoscale. 2019; 11(45): 21981–21989. doi: 10.1039/c9nr07259d

[50]Ajmal Z, Qadeer A, Khan U, et al. Current progresses in two-dimensional MXene-based framework: prospects from superficial synthesis to energy conversion and storage applications. Materials Today Chemistry. 2023; 27: 101238. doi: 10.1016/j.mtchem.2022.101238

[51]Huang H, He J, Wang Z, et al. Scalable, and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors. Nano Energy. 2020; 69: 104431. doi: 10.1016/j.nanoen.2019.104431

[52]Pu S, Wang Z, Xie Y, et al. Origin and Regulation of Self‐Discharge in MXene Supercapacitors. Advanced Functional Materials. 2022; 33(8). doi: 10.1002/adfm.202208715

[53]Gogotsi Y, Anasori B. The Rise of MXenes. ACS Nano. 2019; 13(8): 8491–8494. doi: 10.1021/acsnano.9b06394

[54]Zhang Y, Feng Z, Wang X, et al. MXene/carbon composites for electrochemical energy storage and conversion. Materials Today Sustainability. 2023; 22: 100350. doi: 10.1016/j.mtsust.2023.100350

[55]Elemike EE, Adeyemi J, Onwudiwe DC, et al. The future of energy materials: A case of MXenes-carbon dots nanocomposites. Journal of Energy Storage. 2022; 50: 104711. doi: 10.1016/j.est.2022.104711

[56]Kwon YS, Lee J, Hwang G, et al. Hybrid Carbon Nanofibers Derived from MXene Nanosheets and Aromatic Poly (ether amide) for Self‐Standing Electrochemical Energy Storage Materials. Macromolecular Materials and Engineering. 2022; 307(5). doi: 10.1002/mame.202100877

[57]Garg R, Agarwal A, Agarwal M. Synthesis and optimisation of MXene for supercapacitor application. Journal of Materials Science: Materials in Electronics. 2020; 31(21): 18614–18626. doi: 10.1007/s10854-020-04404-5

[58]Lin Z, Shao H, Xu K, et al. MXenes as High-Rate Electrodes for Energy Storage. Trends in Chemistry. 2020; 2(7): 654–664. doi: 10.1016/j.trechm.2020.04.010

[59]Lu M, Zhang Z, Kang L, et al. Intercalation and delamination behavior of Ti3C2Txand MnO2/Ti3C2Tx/RGO flexible fibers with high volumetric capacitance. Journal of Materials Chemistry A. 2019; 7(20): 12582–12592. doi: 10.1039/c9ta01993f

[60]Fu Q, Wen J, Zhang N, et al. Free-standing Ti3C2Txelectrode with ultrahigh volumetric capacitance. RSC Advances. 2017; 7(20): 11998–12005. doi: 10.1039/c7ra00126f

[61]Ferrara C, Gentile A, Marchionna S, et al. Ti3C2Tx MXene compounds for electrochemical energy storage. Current Opinion in Electrochemistry. 2021; 29: 100764. doi: 10.1016/j.coelec.2021.100764

[62]Forouzandeh P, Pillai SC. MXenes-based nanocomposites for supercapacitor applications. Current Opinion in Chemical Engineering. 2021; 33: 100710. doi: 10.1016/j.coche.2021.100710

[63]Garg R, Agarwal A, Agarwal M. Synthesis and characterization of solution processed MXene. DAE Solid State Physics Symposium 2019. 2020; 2265: 030665. doi: 10.1063/5.0016599

[64]Naguib M, Kurtoglu M, Presser V, et al. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials. 2011; 23(37): 4248–4253. doi: 10.1002/adma.201102306

[65]Naguib M, Mashtalir O, Carle J, et al. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012; 6(2): 1322–1331. doi: 10.1021/nn204153h

[66]Ghidiu M, Lukatskaya MR, Zhao MQ, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature. 2014; 516(7529): 78–81. doi: 10.1038/nature13970

[67]Barsoum MW, Radovic M. Elastic and Mechanical Properties of the MAX Phases. Annual Review of Materials Research. 2011; 41(1): 195–227. doi: 10.1146/annurev-matsci-062910-100448

[68]Lukatskaya MR, Mashtalir O, Ren CE, et al. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science. 2013; 341(6153): 1502–1505. doi: 10.1126/science.1241488

[69]Xie X, Xue Y, Li L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale. 2014; 6(19): 11035–11040. doi: 10.1039/c4nr02080d

[70]Dall’ Agnese Y, Lukatskaya MR, Cook KM, et al. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochemistry Communications. 2014; 48: 118–122. doi: 10.1016/j.elecom.2014.09.002

[71]Li J, Yuan X, Lin C, et al. Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. Advanced Energy Materials. 2017; 7(15). doi: 10.1002/aenm.201602725

[72]Li T, Yao L, Liu Q, et al. Fluorine‐Free Synthesis of High‐Purity Ti3C2Tx (T=OH, O) via Alkali Treatment. Angewandte Chemie International Edition. 2018; 57(21): 6115–6119. doi: 10.1002/anie.201800887

[73]Lukatskaya MR, Kota S, Lin Z, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy. 2017; 2(8). doi: 10.1038/nenergy.2017.105

[74]Deng Y, Shang T, Wu Z, et al. Fast Gelation of Ti3C2Tx MXene Initiated by Metal Ions. Advanced Materials. 2019; 31(43). doi: 10.1002/adma.201902432

[75]Tang J, Mathis T, Zhong X, et al. Optimizing Ion Pathway in Titanium Carbide MXene for Practical High‐Rate Supercapacitor. Advanced Energy Materials. 2020; 11(4). doi: 10.1002/aenm.202003025

[76]Li M, Lu J, Luo K, et al. Element Replacement Approach by Reaction with Lewis Acidic Molten Salts to Synthesize Nanolaminated MAX Phases and MXenes. Journal of the American Chemical Society. 2019; 141(11): 4730–4737. doi: 10.1021/jacs.9b00574

[77]Sun W, Shah SA, Chen Y, et al. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J Mater Chem A. 2017; 5(41): 21663–21668. doi: 10.1039/c7ta05574a

[78]Shi CZY, Zhao D, et al. Iodide ion intercalation into MXene lattice towards energy storage applications. Nano Energy. 2018; 51: 9.

[79]Yang S, Zhang P, Wang F, et al. Fluoride‐Free Synthesis of Two‐Dimensional Titanium Carbide (MXene) Using A Binary Aqueous System. Angewandte Chemie International Edition. 2018; 57(47): 15491–15495. doi: 10.1002/anie.201809662

[80]Zhang S, Huang P, Wang J, et al. Fast and Universal Solution-Phase Flocculation Strategy for Scalable Synthesis of Various Few-Layered MXene Powders. The Journal of Physical Chemistry Letters. 2020; 11(4): 1247–1254. doi: 10.1021/acs.jpclett.9b03682

[81]Zhao M, Ren CE, Ling Z, et al. Flexible MXene/Carbon Nanotube Composite Paper with High Volumetric Capacitance. Advanced Materials. 2014; 27(2): 339–345. doi: 10.1002/adma.201404140

[82]Yu L, Hu L, Anasori B, et al. MXene-Bonded Activated Carbon as a Flexible Electrode for High-Performance Supercapacitors. ACS Energy Letters. 2018; 3(7): 1597–1603. doi: 10.1021/acsenergylett.8b00718

[83]Bai T, Wang W, Xue G, et al. Free-Standing, Flexible Carbon@MXene Films with Cross-Linked Mesoporous Structures toward Supercapacitors and Pressure Sensors. ACS Applied Materials & Interfaces. 2021; 13(48): 57576–57587. doi: 10.1021/acsami.1c16589

[84]Zhu C, Geng F. Macroscopic MXene ribbon with oriented sheet stacking for high‐performance flexible supercapacitors. Carbon Energy. 2020; 3(1): 142–152. doi: 10.1002/cey2.65

[85]Gu Q, Cao Y, Lu M, et al. MXene materials in electrochemical energy storage systems. Chemical Communications. 2024; 60(64): 8339–8349. doi: 10.1039/d4cc02659d

[86]Chen M, Fan Q, Yu P, et al. Engineering Ti3C2-MXene Surface Composition for Excellent Li+ Storage Performance. Molecules. 2024; 29(8): 1731. doi: 10.3390/molecules29081731

[87]Wang YQ, Zhang DT, Zhao B, et al. Ti3C2/Graphene Oxide Layered Nanocomposites for Enhanced Lithium-Ion Storage. ACS Applied Nano Materials. 2023; 6(5): 3572–3579. doi: 10.1021/acsanm.2c05298

[88]Bhat VS, Toghan A, Hegde G, et al. Capacitive dominated charge storage in supermicropores of self-activated carbon electrodes for symmetric supercapacitors. Journal of Energy Storage. 2022; 52: 104776. doi: 10.1016/j.est.2022.104776

[89]Zhu J, Yang D, Yin Z, et al. Graphene and Graphene‐Based Materials for Energy Storage Applications. Small. 2014; 10(17): 3480–3498. doi: 10.1002/smll.201303202

[90]Yuan M, Zhong R, Gao H, et al. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing. Applied Surface Science. 2015; 355: 1136–1144. doi: 10.1016/j.apsusc.2015.07.095

[91]Li L, Wu S, Wu K, et al. Carbon Dot-Regulated 2D MXene Films with High Volumetric Capacitance. Industrial & Engineering Chemistry Research. 2020; 59(31): 13969–13978. doi: 10.1021/acs.iecr.0c01440

[92]Zhang P, Li J, Yang D, et al. Flexible Carbon Dots‐Intercalated MXene Film Electrode with Outstanding Volumetric Performance for Supercapacitors. Advanced Functional Materials. 2022; 33(1). doi: 10.1002/adfm.202209918

[93]Li Y, Liu J, Gong T, et al. One-step hydrothermal preparation of a novel 2D MXene-based composite electrode material synergistically modified by CuS and carbon dots for supercapacitors. Journal of Alloys and Compounds. 2023; 947: 169400. doi: 10.1016/j.jallcom.2023.169400

[94]Tan Z, Wang W, Zhu M, et al. Ti3C2Tx MXene@carbon dots hybrid microflowers as a binder-free electrode material toward high capacity capacitive deionization. Desalination. 2023; 548: 116267. doi: 10.1016/j.desal.2022.116267

[95]Yang L, Zheng W, Zhang P, et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes. Journal of Electroanalytical Chemistry. 2018; 830–831: 1–6. doi: 10.1016/j.jelechem.2018.10.024

[96]Wang Z, Qin S, Seyedin S, et al. High‐Performance Biscrolled MXene/Carbon Nanotube Yarn Supercapacitors. Small. 2018; 14(37). doi: 10.1002/smll.201802225

[97]Nie G, Zhao X, Luan Y, et al. Key issues facing electrospun carbon nanofibers in energy applications: on-going approaches and challenges. Nanoscale. 2020; 12(25): 13225–13248. doi: 10.1039/d0nr03425h

[98]Qin L, Yang D, Zhang M, et al. Superelastic and ultralight electrospun carbon nanofiber/MXene hybrid aerogels with anisotropic microchannels for pressure sensing and energy storage. Journal of Colloid and Interface Science. 2021; 589: 264–274. doi: 10.1016/j.jcis.2020.12.102

[99]Yang X, Chen Y, Zhang C, et al. Electrospun carbon nanofibers and their reinforced composites: Preparation, modification, applications, and perspectives. Composites Part B: Engineering. 2023; 249: 110386. doi: 10.1016/j.compositesb.2022.110386

[100]Zhang H, Su H, Zhang L, et al. Flexible supercapacitors with high areal capacitance based on hierarchical carbon tubular nanostructures. Journal of Power Sources. 2016; 331: 332–339. doi: 10.1016/j.jpowsour.2016.09.064

[101]Moon RJ, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews. 2011; 40(7): 3941. doi: 10.1039/c0cs00108b

[102]Zhou J, Zhang S, Zhou YN, et al. Biomass-Derived Carbon Materials for High-Performance Supercapacitors: Current Status and Perspective. Electrochemical Energy Reviews. 2021; 4(2): 219–248. doi: 10.1007/s41918-020-00090-3

[103]Wang Q, Yuan H, Zhang M, et al. A Highly Conductive and Supercapacitive MXene/N-CNT Electrode Material Derived from a MXene-Co-Melamine Precursor. ACS Applied Electronic Materials. 2023; 5(5): 2506–2517. doi: 10.1021/acsaelm.2c01768

[104]Li K, Zhang P, Soomro RA, et al. Alkali-Induced Porous MXene/Carbon Nanotube-Based Film Electrodes for Supercapacitors. ACS Applied Nano Materials. 2022; 5(3): 4180–4186. doi: 10.1021/acsanm.2c00109

[105]Cai YZ, Fang YS, Cao WQ, et al. MXene-CNT/PANI ternary material with excellent supercapacitive performance driven by synergy. Journal of Alloys and Compounds. 2021; 868: 159159. doi: 10.1016/j.jallcom.2021.159159

[106]Wang Y, Chen N, Liu Y, et al. MXene/Graphdiyne nanotube composite films for Free-Standing and flexible Solid-State supercapacitor. Chemical Engineering Journal. 2022; 450: 138398. doi: 10.1016/j.cej.2022.138398

[107]Levitt AS, Alhabeb M, Hatter CB, et al. Electrospun MXene/carbon nanofibers as supercapacitor electrodes. Journal of Materials Chemistry A. 2019; 7(1): 269–277. doi: 10.1039/c8ta09810g

[108]Kshetri T, Khumujam DD, Singh TI, et al. Co-MOF@MXene-carbon nanofiber-based freestanding electrodes for a flexible and wearable quasi-solid-state supercapacitor. Chemical Engineering Journal. 2022; 437: 135338. doi: 10.1016/j.cej.2022.135338

[109]Zhou T, Pang WK, Zhang C, et al. Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-SnS2 to Orthorhombic-SnS. ACS Nano. 2014; 8(8): 8323–8333. doi: 10.1021/nn503582c

[110]Sahoo BB, Pandey VS, Dogonchi AS, et al. Synthesis, characterization and electrochemical aspects of graphene based advanced supercapacitor electrodes. Fuel. 2023; 345: 128174. doi: 10.1016/j.fuel.2023.128174

[111]Miao J, Zhu Q, Li K, et al. Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. Journal of Energy Chemistry. 2021; 52: 243–250. doi: 10.1016/j.jechem.2020.04.015

[112]Moatasim M, Wang Z, Xie Y, et al. Solving Gravimetric-Volumetric Capacitive Paradox of 2D Materials through Dual-Functional Chemical Bonding-Induced Self-Constructing Graphene-MXene Monoliths. ACS Applied Materials & Interfaces. 2021; 13(5): 6339–6348. doi: 10.1021/acsami.0c21257

[113]Fan Z, Wang Y, Xie Z, et al. Modified MXene/Holey Graphene Films for Advanced Supercapacitor Electrodes with Superior Energy Storage. Advanced Science. 2018; 5(10). doi: 10.1002/advs.201800750

[114]Shao L, Xu J, Ma J, et al. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Composites Communications. 2020; 19: 108–113. doi: 10.1016/j.coco.2020.03.006

[115]Yan J, Ren CE, Maleski K, et al. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance. Advanced Functional Materials. 2017; 27(30). doi: 10.1002/adfm.201701264

[116]Yang X, Wang Q, Zhu K, et al. 3D Porous Oxidation‐Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High‐Performance Supercapacitors. Advanced Functional Materials. 2021; 31(20). doi: 10.1002/adfm.202101087.

[117]Cao B, Zhang Q, Liu H, et al. Graphitic Carbon Nanocage as a Stable and High Power Anode for Potassium‐Ion Batteries. Advanced Energy Materials. 2018; 8(25). doi: 10.1002/aenm.201801149

[118]Ganiyat Olatoye A, Li W, Oluwaseyi Fagbohun E, et al. High-performance asymmetric supercapacitor based on nickel-MOF anchored MXene//NPC/rGO. Journal of Electroanalytical Chemistry. 2023; 928: 117036. doi: 10.1016/j.jelechem.2022.117036

[119]Gao T, Li H, Zhou F, et al. Mesoporous carbon derived from ZIF-8 for high efficient electrosorption. Desalination. 2019; 451: 133–138. doi: 10.1016/j.desal.2017.06.021

[120]Jiang G, Zheng N, Chen X, et al. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chemical Engineering Journal. 2019; 373: 1309–1318. doi: 10.1016/j.cej.2019.05.119

Published
2025-01-14
How to Cite
Garg, R. (2025). A review on MXene (Ti3C2Tx) composites with varied sizes of carbon for supercapacitor applications. Energy Storage and Conversion, 3(1), 1920. https://doi.org/10.59400/esc1920
Section
Review