Constructing polyolefin-based lithium-ion battery separators membrane for energy storage and conversion
Abstract
Owing to the escalating demand for environmentally friendly commodities, lithium-ion batteries (LIBs) are gaining extensive recognition as a viable means of energy storage and conversion. LIBs comprise cathode and anode electrodes, electrolytes, and separators. Notably, the separator, a crucial and indispensable element in LIBs that mainly comprises a porous membrane material, necessitates substantial research focus. Scholars have consequently strived to devise novel systems that augment separator efficiency, bolster safety measures, and surmount existing constraints. This review endeavors to equip researchers with comprehensive information on polyolefin-based separator membranes, encompassing performance prerequisites, functional attributes, scientific advancements, and so on. Specifically, it scrutinizes the latest innovations in porous membrane configuration, fabrication, and enhancement that utilize the most prevalent polyolefin materials today. Consequently, robust and enduring membranes fabricated have demonstrated superior effectiveness across diverse applications, facilitating a circular economy that curbs waste materials, reduces operational expenses, and mitigates environmental impact.
References
[1] Di Lecce D, Verrelli R, Hassoun J. Lithium-ion batteries for sustainable energy storage: recent advances towards new cell configurations. Green Chemistry. 2017; 19(15): 3442-3467. doi: 10.1039/c7gc01328k
[2] Chae BG, Park SY, Song JH, et al. Evolution and expansion of Li concentration gradient during charge–discharge cycling. Nature Communications. 2021; 12(1). doi: 10.1038/s41467-021-24120-w
[3] Goodenough JB, Park KS. The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society. 2013; 135(4): 1167-1176. doi: 10.1021/ja3091438
[4] Reddy MV, Mauger A, Julien CM, et al. Brief History of Early Lithium-Battery Development. Materials. 2020; 13(8): 1884. doi: 10.3390/ma13081884
[5] Nishi Y. The development of lithium ion secondary batteries. The Chemical Record. 2001; 1(5): 406-413. doi: 10.1002/tcr.1024
[6] Lin L, Ning H, Song S, et al. Flexible electrochemical energy storage: The role of composite materials. Composites Science and Technology. 2020; 192: 108102. doi: 10.1016/j.compscitech.2020.108102
[7] Babiker DMD, Usha ZR, Wan C, et al. Recent progress of composite polyethylene separators for lithium/sodium batteries. Journal of Power Sources. 2023; 564: 232853. doi: 10.1016/j.jpowsour.2023.232853
[8] Qi Z, Wang H. Advanced Thin Film Cathodes for Lithium Ion Batteries. Research. 2020; 2020. doi: 10.34133/2020/2969510
[9] Yang Y, Chen Z, Lv T, et al. Ultrafast self-assembly of supramolecular hydrogels toward novel flame-retardant separator for safe lithium ion battery. Journal of Colloid and Interface Science. 2023; 649: 591-600. doi: 10.1016/j.jcis.2023.06.058
[10] Liu F, Chuan X. Recent developments in natural mineral-based separators for lithium-ion batteries. RSC Advances. 2021; 11(27): 16633-16644. doi: 10.1039/d1ra02845f
[11] Bicy K, Gueye AB, Rouxel D, et al. Lithium-ion battery separators based on electrospun PVDF: A review. Surfaces and Interfaces. 2022; 31: 101977. doi: 10.1016/j.surfin.2022.101977
[12] Langner T, Sieber T, Rietig A, et al. A phenomenological and quantitative view on the degradation of positive electrodes from spent lithium-ion batteries in humid atmosphere. Scientific Reports. 2023; 13(1). doi: 10.1038/s41598-023-32688-0
[13] Manjakkal L, Jain A, Nandy S, et al. Sustainable electrochemical energy storage devices using natural bast fibres. Chemical Engineering Journal. 2023; 465: 142845. doi: 10.1016/j.cej.2023.142845
[14] Tajik M, Makui A, Tosarkani BM. Sustainable cathode material selection in lithium-ion batteries using a novel hybrid multi-criteria decision-making. Journal of Energy Storage. 2023; 66: 107089. doi: 10.1016/j.est.2023.107089
[15] Cheng N, Ren L, Xu X, et al. Application of organic-inorganic hybrids in lithium batteries. Materials Today Physics. 2020; 15: 100289. doi: 10.1016/j.mtphys.2020.100289
[16] Wu Y, Lei D, Wang C. The formation of LiAl5O8 nanowires from bulk Li-Al alloy enables dendrite-free Li metal batteries. Materials Today Physics. 2021; 18: 100395. doi: 10.1016/j.mtphys.2021.100395
[17] Luo W, Cheng S, Wu M, et al. A review of advanced separators for rechargeable batteries. Journal of Power Sources. 2021; 509: 230372. doi: 10.1016/j.jpowsour.2021.230372
[18] Wu SL, Qiao J, Guan J, et al. Nascent disentangled UHMWPE: Origin, synthesis, processing, performances and applications. European Polymer Journal. 2023; 184: 111799. doi: 10.1016/j.eurpolymj.2022.111799
[19] Duan Y, Li L, Shen Z, et al. Engineering Metal-Organic-Framework (MOF)-Based Membranes for Gas and Liquid Separation. Membranes. 2023; 13(5): 480. doi: 10.3390/membranes13050480
[20] Weidenkaff A, Wagner-Wenz R, Veziridis A. A world without electronic waste. Nature Reviews Materials. 2021; 6(6): 462-463. doi: 10.1038/s41578-021-00330-y
[21] Wang W, Zhang Z, Ma L, et al. Explorations of complex thermally induced phase separation (C-TIPS) method for manufacturing novel diphenyl ether polysulfate flat microporous membranes. Journal of Membrane Science. 2022; 659: 120739. doi: 10.1016/j.memsci.2022.120739
[22] Lagadec MF, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators. Nature Energy. 2018; 4(1): 16-25. doi: 10.1038/s41560-018-0295-9
[23] Serra JP, Fidalgo-Marijuan A, Martins PM, et al. Porous Composite Bifunctional Membranes for Lithium‐Ion Battery Separator and Photocatalytic Degradation Applications: Toward Multifunctionality for Circular Economy. Advanced Energy and Sustainability Research. 2021; 2(7). doi: 10.1002/aesr.202100046
[24] Akhmetova K, Tatykayev B, Kalybekkyzy S, et al. One-step fabrication of all-in-one flexible nanofibrous lithium-ion battery. Journal of Energy Storage. 2023; 65: 107237. doi: 10.1016/j.est.2023.107237
[25] Ding L, Li D, Liu L, et al. Dependence of lithium metal battery performances on inherent separator porous structure regulation. Journal of Energy Chemistry. 2023; 84: 436-447. doi: 10.1016/j.jechem.2023.06.002
[26] Serra JP, Uranga J, Gonçalves R, et al. Sustainable lithium-ion battery separators based on cellulose and soy protein membranes. Electrochimica Acta. 2023; 462: 142746. doi: 10.1016/j.electacta.2023.142746
[27] Wang C, Zhu G, Hu Y, et al. Ionic conductivity and cycling stability-enhanced composite separator using hollow halloysite nanotubes constructed on PP nonwoven through polydopamine-induced water-based coating method. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023; 667: 131403. doi: 10.1016/j.colsurfa.2023.131403
[28] Zhu X, Roy JC, Li X, et al. Toward improved sustainability in lithium ion batteries using bio-based materials. Trends in Chemistry. 2023; 5(5): 393-403. doi: 10.1016/j.trechm.2023.03.004
[29] Li Y, Yu L, Hu W, et al. Thermotolerant separators for safe lithium-ion batteries under extreme conditions. Journal of Materials Chemistry A. 2020; 8(39): 20294-20317. doi: 10.1039/d0ta07511f
[30] Waqas M, Ali S, Feng C, et al. Recent Development in Separators for High‐Temperature Lithium‐Ion Batteries. Small. 2019; 15(33). doi: 10.1002/smll.201901689
[31] Deng K, Qin J, Wang S, et al. Effective Suppression of Lithium Dendrite Growth Using a Flexible Single‐Ion Conducting Polymer Electrolyte. Small. 2018; 14(31). doi: 10.1002/smll.201801420
[32] Costa CM, Rodrigues HM, Gören A, et al. Preparation of Poly(vinylidene fluoride) Lithium-Ion Battery Separators and Their Compatibilization with Ionic Liquid - A Green Solvent Approach. ChemistrySelect. 2017; 2(19): 5394-5402. doi: 10.1002/slct.201701028
[33] Lingappan N, Lee W, Passerini S, et al. A comprehensive review of separator membranes in lithium-ion batteries. Renewable and Sustainable Energy Reviews. 2023; 187: 113726. doi: 10.1016/j.rser.2023.113726
[34] Gigova A. Investigation of the porous structure of battery separators using various porometric methods. Journal of Power Sources. 2006; 158(2): 1054-1061. doi: 10.1016/j.jpowsour.2005.11.006
[35] Li L, Duan Y. Engineering Polymer-Based Porous Membrane for Sustainable Lithium-Ion Battery Separators. Polymers. 2023; 15(18): 3690. doi: 10.3390/polym15183690
[36] Zhang L, Li X, Yang M, et al. High-safety separators for lithium-ion batteries and sodium-ion batteries: advances and perspective. Energy Storage Materials. 2021; 41: 522-545. doi: 10.1016/j.ensm.2021.06.033
[37] Cronau M, Szabo M, König C, et al. How to Measure a Reliable Ionic Conductivity? The Stack Pressure Dilemma of Microcrystalline Sulfide-Based Solid Electrolytes. ACS Energy Letters. 2021; 6(9): 3072-3077. doi: 10.1021/acsenergylett.1c01299
[38] Ding Y, Jiang Y, Zeng C, et al. Recent progress of advanced separators for Li-ion batteries. Journal of Materials Science. 2024; 59(27): 12154-12176. doi: 10.1007/s10853-024-09895-9
[39] Lee Y, Park J, Jeon H, et al. In-depth correlation of separator pore structure and electrochemical performance in lithium-ion batteries. Journal of Power Sources. 2016; 325: 732-738. doi: 10.1016/j.jpowsour.2016.06.094
[40] Rajagopalan Kannan DR, Terala PK, Moss PL, et al. Analysis of the Separator Thickness and Porosity on the Performance of Lithium-Ion Batteries. International Journal of Electrochemistry. 2018; 2018: 1-7. doi: 10.1155/2018/1925708
[41] Zhong S, Yuan B, Guang Z, et al. Recent progress in thin separators for upgraded lithium ion batteries. Energy Storage Materials. 2021; 41: 805-841. doi: 10.1016/j.ensm.2021.07.028
[42] Cannarella J, Liu X, Leng CZ, et al. Mechanical Properties of a Battery Separator under Compression and Tension. Journal of The Electrochemical Society. 2014; 161(11): F3117-F3122. doi: 10.1149/2.0191411jes
[43] Wu J, Yuan L, Zhang W, et al. Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy & Environmental Science. 2021; 14(1): 12-36. doi: 10.1039/d0ee02241a
[44] Jin Y, Ai Z, Song Y, et al. Enhanced lithium storage performance of Si/C composite nanofiber membrane with carbon coating as binder-free and self-supporting anode for lithium-ion battery. Materials Research Bulletin. 2023; 167: 112429. doi: 10.1016/j.materresbull.2023.112429
[45] Yan J, Zhu J, Zhang L, et al. Na3V2(PO4)3-decorated separator as an improved catalysis ceramic layer for high-performance lithium sulfur batteries. Ionics. 2023; 29(6): 2271-2285. doi: 10.1007/s11581-023-04981-5
[46] Murali DRL, Banihashemi F, Lin JYS. Zeolite membrane separators for fire-safe Li-ion batteries—Effects of crystal shape and membrane pore structure. Journal of Membrane Science. 2023; 680: 121743. doi: 10.1016/j.memsci.2023.121743
[47] Lin W, Wang F, Wang H, et al. Thermal‐Stable Separators: Design Principles and Strategies Towards Safe Lithium‐Ion Battery Operations. ChemSusChem. 2022; 15(24). doi: 10.1002/cssc.202201464
[48] Abraham KM. Directions in secondary lithium battery research and development. Electrochimica Acta. 1993; 38(9): 1233-1248. doi: 10.1016/0013-4686(93)80054-4.
[49] Lee H, Yanilmaz M, Toprakci O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci. 2014; 7(12): 3857-3886. doi: 10.1039/c4ee01432d
[50] Lin F, Markus IM, Doeff MM, et al. Chemical and Structural Stability of Lithium-Ion Battery Electrode Materials under Electron Beam. Scientific Reports. 2014; 4(1). doi: 10.1038/srep05694
[51] Babiker DMD, Wan C, Mansoor B, et al. Superior lithium battery separator with extraordinary electrochemical performance and thermal stability based on hybrid UHMWPE/SiO2 nanocomposites via the scalable biaxial stretching process. Composites Part B: Engineering. 2021; 211: 108658. doi: 10.1016/j.compositesb.2021.108658
[52] Zhu X, Jiang X, Ai X, et al. TiO2 ceramic-grafted polyethylene separators for enhanced thermostability and electrochemical performance of lithium-ion batteries. Journal of Membrane Science. 2016; 504: 97-103. doi: 10.1016/j.memsci.2015.12.059
[53] Suharto Y, Lee Y, Yu JS, et al. Microporous ceramic coated separators with superior wettability for enhancing the electrochemical performance of sodium-ion batteries. Journal of Power Sources. 2018; 376: 184-190. doi: 10.1016/j.jpowsour.2017.11.083
[54] Huang X. Separator technologies for lithium-ion batteries. Journal of Solid State Electrochemistry. 2010; 15(4): 649-662. doi: 10.1007/s10008-010-1264-9
[55] Li D, Shi D, Xia Y, et al. Superior Thermally Stable and Nonflammable Porous Polybenzimidazole Membrane with High Wettability for High-Power Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2017; 9(10): 8742-8750. doi: 10.1021/acsami.6b16316
[56] Jeon DH. Wettability in electrodes and its impact on the performance of lithium-ion batteries. Energy Storage Materials. 2019; 18: 139-147. doi: 10.1016/j.ensm.2019.01.002
[57] Zhai P, Liu K, Wang Z, et al. Multifunctional separators for high-performance lithium ion batteries. Journal of Power Sources. 2021; 499: 229973. doi: 10.1016/j.jpowsour.2021.229973
[58] Chen P, Ren H, Yan L, et al. Metal–Organic Frameworks Enabled High-Performance Separators for Safety-Reinforced Lithium Ion Battery. ACS Sustainable Chemistry & Engineering. 2019; 7(19): 16612-16619. doi: 10.1021/acssuschemeng.9b03854
[59] Zhao P, Yang JP, Shang YM, et al. Surface modification of polyolefin separators for lithium ion batteries to reduce thermal shrinkage without thickness increase. Journal of Energy Chemistry. 2015; 24(2): 138-144. doi: 10.1016/S2095-4956(15)60294-7.
[60] Ding L, Yan N, Zhang S, et al. Facile manufacture technique for lithium-ion batteries composite separator via online construction of fumed SiO2 coating. Materials & Design. 2022; 215: 110476. doi: 10.1016/j.matdes.2022.110476
[61] Yan Y, Kong QR, Sun CC, et al. Copolymer-assisted Polypropylene Separator for Fast and Uniform Lithium Ion Transport in Lithium-ion Batteries. Chinese Journal of Polymer Science. 2020; 38(12): 1313-1324. doi: 10.1007/s10118-020-2455-1
[62] Yu J, Dong N, Liu B, et al. A newly-developed heat-resistance polyimide microsphere coating to enhance the thermal stability of commercial polyolefin separators for advanced lithium-ion battery. Chemical Engineering Journal. 2022; 442: 136314. doi: 10.1016/j.cej.2022.136314
[63] Chen L, Yue FS, Zhao YM, et al. Surface tailoring of polypropylene separators for lithium-ion batteries via N-hydroxyphthalimide catalysis. European Polymer Journal. 2021; 152: 110487. doi: 10.1016/j.eurpolymj.2021.110487
[64] Sun X, Xu J, Zhi X, et al. Electrospun organically modified sepiolite/PVDF coating on polypropylene separator to improve electrochemical performance of lithium-ion battery. Express Polymer Letters. 2024; 18(6): 575-591. doi: 10.3144/expresspolymlett.2024.43
[65] Liu P, Zhang X, Ma C, et al. Preparation and Properties of PP/PAN/Cotton Fibers Composite Membrane as Lithium-Ion Battery Separator with Thermal Shut-Off Function. Batteries. 2023; 9(2): 113. doi: 10.3390/batteries9020113
[66] Li Y, Pu H. Facile fabrication of multilayer separators for lithium-ion battery via multilayer coextrusion and thermal induced phase separation. Journal of Power Sources. 2018; 384: 408-416. doi: 10.1016/j.jpowsour.2018.02.086
[67] Wang Y, Wang Q, Lan Y, et al. Aqueous aluminide ceramic coating polyethylene separators for lithium-ion batteries. Solid State Ionics. 2020; 345: 115188. doi: 10.1016/j.ssi.2019.115188
[68] Fu W, Xu R, Zhang X, et al. Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) particles. Journal of Power Sources. 2019; 436: 226839. doi: 10.1016/j.jpowsour.2019.226839
[69] Qian W, Wu S, Lei C, et al. Aging Behavior of Polyethylene and Ceramics-Coated Separators under the Simulated Lithium-Ion Battery Service Compression and Temperature Field. Coatings. 2024; 14(4): 419. doi: 10.3390/coatings14040419
[70] Ding H, Ge J, Zhang T, et al. Thermally stable poly-aromatic solid electrolyte coated polyethylene membrane as high-performance lithium-ion battery separator. Journal of Power Sources. 2024; 602: 234355. doi: 10.1016/j.jpowsour.2024.234355
[71] Wang Z, Chen J, Ye B, et al. A pore-controllable polyamine (PAI) layer-coated polyolefin (PE) separator for pouch lithium-ion batteries with enhanced safety. Journal of Solid State Electrochemistry. 2020; 24(4): 843-853. doi: 10.1007/s10008-019-04488-y
[72] Yue H, Yao Y, Li Y, et al. Thermally Resistant, Mechanically Robust, Enamel‐Inspired Hydroxyapatite/Polyethylene Nanocomposite Battery Separator. Advanced Functional Materials. 2023; 34(7). doi: 10.1002/adfm.202308039
[73] Kim KJ, Kwon YK, Yim T, et al. Functional separator with lower resistance toward lithium ion transport for enhancing the electrochemical performance of lithium ion batteries. Journal of Industrial and Engineering Chemistry. 2019; 71: 228-233. doi: 10.1016/j.jiec.2018.11.029
[74] Sheng L, Song L, Gong H, et al. Polyethylene separator grafting with polar monomer for enhancing the lithium-ion transport property. Journal of Power Sources. 2020; 479: 228812. doi: 10.1016/j.jpowsour.2020.228812
[75] Chen Q, Yang L, Gao X, et al. Polyvinylidene fluoride gel‐polyethylene composite separator optimizing the interface compatibility between the separator and the electrode. Journal of Applied Polymer Science. 2024; 141(40). doi: 10.1002/app.56037
[76] Xiao Y, Fu A, Zou Y, et al. High safety lithium-ion battery enabled by a thermal-induced shutdown separator. Chemical Engineering Journal. 2022; 438: 135550. doi: 10.1016/j.cej.2022.135550
[77] Jiang Y, Sun C, Dong F, et al. Multilayer polyethylene separator with enhanced thermal properties for safe lithium-ion batteries. Particuology. 2024; 91: 29-37. doi: 10.1016/j.partic.2023.12.017
[78] Shin SC, Kim J, Modigunta JKR, et al. Bio-mimicking organic-inorganic hybrid ladder-like polysilsesquioxanes as a surface modifier for polyethylene separator in lithium-ion batteries. Journal of Membrane Science. 2021; 620: 118886. doi: 10.1016/j.memsci.2020.118886
[79] Habumugisha JC, Usha ZR, Yu R, et al. Thermally stable and high electrochemical performance ultra-high molecular weight polyethylene/poly(4-methyl-1-pentene) blend film used as Li-ion battery separator. Applied Materials Today. 2021; 24: 101136. doi: 10.1016/j.apmt.2021.101136
[80] Li R, Gao P. Nanoporous UHMWPE Membrane Separators for Safer and High‐Power‐Density Rechargeable Batteries. Global Challenges. 2017; 1(4). doi: 10.1002/gch2.201700020
[81] Wu Y, Yang F, Cao Y, et al. Investigation on cavitation behavior of ultrahigh molecular weight polyethylene during stretching in wet process and dry process. Polymer. 2021; 230: 124081. doi: 10.1016/j.polymer.2021.124081
[82] Ding L, Li D, Du F, et al. Novel preparation of lithium‐ion battery wet‐processed separator based on the synergistic effect of porous skeleton nano‐Al2O3in situ blending and synchro‐draw. Polymer International. 2022; 72(1): 61-70. doi: 10.1002/pi.6447
[83] Romano D, Marroquin‐Garcia R, Gupta V, et al. An Unconventional Route for Synthesis and Solid‐State Processing of Low‐Entangled Ultra‐High Molecular Weight Isotactic Polypropylene. Macromolecular Rapid Communications. 2023; 44(10). doi: 10.1002/marc.202300039
[84] Hasanpoor M, Kerr R, Forsyth M, et al. Enhancing Lithium‐Ion Battery Performance with Alumina‐Coated Separators: Exploring the Potential of Different Alumina Particle Sizes, Coating Techniques, and Calendering. Batteries & Supercaps. 2024; 7(8). doi: 10.1002/batt.202400229
[85] Jiang LL, Deng YZ, Luo T, et al. A smart membrane with negative thermo-responsiveness in battery electrolyte solution. Journal of Membrane Science. 2024; 692: 122266. doi: 10.1016/j.memsci.2023.122266
[86] Lee S, Byun S, Kang SW. Mass transport to generate the channels in cellulose polymers by vacuum-assisted process. International Journal of Biological Macromolecules. 2024; 259: 128337. doi: 10.1016/j.ijbiomac.2023.128337
[87] Boateng B, Zhang X, Zhen C, et al. Recent advances in separator engineering for effective dendrite suppression of Li‐metal anodes. Nano Select. 2021; 2(6): 993-1010. doi: 10.1002/nano.202000004
[88] Wang H, Wu Z, Lu Y, et al. Understanding the pore structure evolution of polyethylene separator with dissipative particle dynamics simulation. Polymer Engineering & Science. 2023; 64(2): 518-533. doi: 10.1002/pen.26563
[89] Babiker DMD, Yu R, Usha ZR, et al. High performance ultra-high molecular weight polyethylene nanocomposite separators with excellent rate capabilities designed for next-generation lithium-ion batteries. Materials Today Physics. 2022; 23: 100626. doi: 10.1016/j.mtphys.2022.100626
Copyright (c) 2024 Lei Li, Fanmin Kong, Ang Xiao, Hao Su, Xiaolian Wu, Ziling Zhang, Haoqi Wang, Yutian Duan
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it for any purpose, even commercially, under the condition that the authors are given credit. With this license, authors hold the copyright.