MXene: A new revolution in the world of 2-D materials
Abstract
MXenes have imposed a profound effect on materials science and nanotechnology fields after their discovery in 2011. Theoretical models have predicted more than 100 potential compositions of MXene whereas laboratory-scale synthesis reflects their success of over 40 distinct structures till date. The distinctive properties of MXenes have led to their use for a diverse range of applications, such as energy storage, environmental remediation, electronics, communications, gas and liquid separation and adsorption, biomedical fields, and optoelectronics. The increased interest of researchers in MXenes has led to a wide rise in research publications, showing their growing importance in different scientific domains. In 2024, MXenes had shown wide potential in various areas, including energy storage devices, electromagnetic interference shielding, nanocomposites, and hybrid materials. However, the variations in the choice of precursors, reactor design, cost, synthesis parameters pose several challenges in ensuring the production of high-quality MXenes. The applicability of MXenes continues to broaden as its compositions are continuously accelerating. This review aims is to provide a comprehensive overview of MXene history, its properties, challenges, latest trends, and different applications to highlight its potential and gather new audiences towards this family of two-dimensional materials.
References
[1]Naguib M, Kurtoglu M, Presser V, et al. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Advanced Materials. 2011; 23(37): 4248–4253. doi: 10.1002/adma.201102306
[2]Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials. 2017; 2(2). doi: 10.1038/natrevmats.2016.98
[3]VahidMohammadi A, Rosen J, Gogotsi Y. The world of two-dimensional carbides and nitrides (MXenes). Science. 2021; 372(6547). doi: 10.1126/science.abf1581
[4]Garg R, Agarwal A, Agarwal M. Synthesis and characterization of solution processed MXene. DAE SOLID STATE PHYSICS SYMPOSIUM 2019. 2020; 2265: 030665. doi: 10.1063/5.0016599
[5]Sokol M, Natu V, Kota S, et al. On the Chemical Diversity of the MAX Phases. Trends in Chemistry. 2019; 1(2): 210–223. doi: 10.1016/j.trechm.2019.02.016
[6]Anasori B, Gogotsi Y, eds. 2D Metal Carbides and Nitrides (MXenes). Springer International Publishing; 2019. doi: 10.1007/978-3-030-19026-2
[7]Verger L, Natu V, Carey M, et al. MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. Trends in Chemistry. 2019; 1(7): 656–669. doi: 10.1016/j.trechm.2019.04.006
[8]Alhabeb M, Maleski K, Anasori B, et al. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chemistry of Materials. 2017; 29(18): 7633–7644. doi: 10.1021/acs.chemmater.7b02847
[9]Ye HZ, Liu XY, Review of recent studies in magnesium matrix composites. Springer nature link. 2004; 39: 6153–6171. doi: 10.1023/B:JMSC.0000043583.47148.31
[10]Gogotsi Y, Anasori B. The Rise of MXenes. ACS Nano. 2019; 13(8): 8491–8494. doi: 10.1021/acsnano.9b06394
[11]Naguib M, Mashtalir O, Carle J, et al. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012; 6(2): 1322–1331. doi: 10.1021/nn204153h
[12]Deysher G, Shuck CE, Hantanasirisakul K, et al. Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic Layers of Transition Metals. ACS Nano. 2019; 14(1): 204–217. doi: 10.1021/acsnano.9b07708
[13]Frey NC, Wang J, Vega Bellido GI, et al. Prediction of Synthesis of 2D Metal Carbides and Nitrides (MXenes) and Their Precursors with Positive and Unlabeled Machine Learning. ACS Nano. 2019; 13(3): 3031–3041. doi: 10.1021/acsnano.8b08014
[14]Han M, Maleski K, Shuck CE, et al. Tailoring Electronic and Optical Properties of MXenes through Forming Solid Solutions. Journal of the American Chemical Society. 2020; 142(45): 19110–19118. doi: 10.1021/jacs.0c07395
[15]Han M, Shuck CE, Rakhmanov R, et al. Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding. ACS Nano. 2020; 14(4): 5008–5016. doi: 10.1021/acsnano.0c01312
[16]Hong W, Wyatt BC, Nemani SK, et al. Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bulletin. 2020; 45(10): 850–861. doi: 10.1557/mrs.2020.251
[17]Alnoor H, Elsukova A, Palisaitis J, et al. Exploring MXenes and their MAX phase precursors by electron microscopy. Materials Today Advances. 2021; 9: 100123. doi: 10.1016/j.mtadv.2020.100123
[18]Nemani SK, Zhang B, Wyatt BC, et al. High-Entropy 2D Carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano. 2021; 15(8): 12815–12825. doi: 10.1021/acsnano.1c02775
[19]Du Z, Wu C, Chen Y, et al. High‐Entropy Atomic Layers of Transition‐Metal Carbides (MXenes). Advanced Materials. 2021; 33(39). doi: 10.1002/adma.202101473
[20]Khazaei M, Mishra A, Venkataramanan NS, et al. Recent advances in MXenes: From fundamentals to applications. Current Opinion in Solid State and Materials Science. 2019; 23(3): 164–178. doi: 10.1016/j.cossms.2019.01.002
[21]Bae S, Kang YG, Khazaei M, et al. Electronic and magnetic properties of carbide MXenes—the role of electron correlations. Materials Today Advances. 2021; 9: 100118. doi: 10.1016/j.mtadv.2020.100118
[22]Yang Y, Hantanasirisakul K, Frey NC, et al. Distinguishing electronic contributions of surface and sub-surface transition metal atoms in Ti-based MXenes. 2D Materials. 2020; 7(2):025015. doi: 10.1088/2053-1583/ab68e7
[23]Kamysbayev V, Filatov AS, Hu H, et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 2020; 369(6506): 979–983. doi: 10.1126/science.aba8311
[24]Iqbal A, Shahzad F, Hantanasirisakul K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti 3 CNT x (MXene). Science. 2020; 369(6502): 446–450. doi: 10.1126/science.aba7977
[25]Carey M, Barsoum MW. MXene polymer nanocomposites: a review. Materials Today Advances. 2021; 9: 100120. doi: 10.1016/j.mtadv.2020.100120
[26]Yue Y, Liu N, Liu W, et al. 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy. 2018; 50: 79–87. doi: 10.1016/j.nanoen.2018.05.020
[27]Garg R, Agarwal A, Agarwal M. A review on MXene for energy storage application: effect of interlayer distance. Materials Research Express. 2020; 7(2): 022001. doi: 10.1088/2053-1591/ab750d
[28]Chae Y, Kim SJ, Cho SY, et al. An investigation into the factors governing the oxidation of two-dimensional Ti3C2MXene. Nanoscale. 2019; 11(17): 8387–8393. doi: 10.1039/c9nr00084d
[29]Habib T, Zhao X, Shah SA, et al. Oxidation stability of Ti3C2Tx MXene nanosheets in solvents and composite films. npj 2D Materials and Applications. 2019; 3(1). doi: 10.1038/s41699-019-0089-3
[30]Garg R, Agarwal A, Agarwal M. Effect of vanadium doping on MXene-based supercapacitor. Journal of Materials Science: Materials in Electronics. 2021; 32(17): 22046–22059. doi: 10.1007/s10854-021-06668-x
[31]Mustafa B, Lu W, Wang Z, et al. Ultrahigh Energy and Power Densities of d-MXene-Based Symmetric Supercapacitors. Nanomaterials. 2022; 12(19): 3294. doi: 10.3390/nano12193294
[32]N.K. PS, Jeong SM, Rout CS. MXene-carbon-based hybrid materials for supercapacitor applications. Energy Advances. 2024; 2. doi: 10.1039/D3YA00502J
[33]Rong C, Su T, Li Z, et al. Elastic properties and tensile strength of 2D Ti3C2Tx MXene monolayers. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-45657-6
[34]Orangi J, Tetik H, Parandoush P, et al. Conductive and highly compressible MXene aerogels with ordered microstructures as high-capacity electrodes for Li-ion capacitors. Materials Today Advances. 2021; 9: 100135. doi: 10.1016/j.mtadv.2021.100135
[35]Shao H, Lin Z, Xu K, et al. Electrochemical study of pseudocapacitive behavior of Ti3C2Tx MXene material in aqueous electrolytes. Energy Storage Materials. 2019; 18: 456–461. doi: 10.1016/j.ensm.2018.12.017
[36]Usman KAS, Qin S, Henderson LC, et al. Ti3C2TxMXene: from dispersions to multifunctional architectures for diverse applications. Materials Horizons. 2021; 8(11): 2886–2912. doi: 10.1039/d1mh00968k
[37]Ma R, Chen Z, Zhao D, et al. Ti3C2Tx MXene for electrode materials of supercapacitors. Journal of Materials Chemistry A. 2021; 9(19): 11501–11529. doi: 10.1039/d1ta00681a
[38]Hu M, Cheng R, Li Z, et al. Interlayer engineering of Ti3C2Tx MXenes towards high capacitance supercapacitors. Nanoscale. 2020; 12(2): 763–771. doi: 10.1039/c9nr08960h
[39]Fan Y, Mei X, Ye L, et al. Tailoring Ti3C2Tx MXene Flake Sizes for Modified Electrochemical Performance: A Top-down Approach. Current Physics. 2024; 1(1). doi: 10.2174/0127723348268837231206095532
[40]Samylingam I, Kadirgama K, Samylingam L, et al. Review of Ti3C2Tx MXene Nanofluids: Synthesis, Characterization, and Applications. Engineering, Technology & Applied Science Research. 2024; 14(3): 14708–14712. doi: 10.48084/etasr.7504
[41]N. K. PS, Jeong SM, Rout CS. MXene–carbon based hybrid materials for supercapacitor applications. Energy Advances. 2024; 3(2): 341–365. doi: 10.1039/d3ya00502j
[42]Nahirniak S, Ray A, Saruhan B. Challenges and Future Prospects of the MXene-Based Materials for Energy Storage Applications. Batteries. 2023; 9(2): 126. doi: 10.3390/batteries9020126
[43]Huang S, Mutyala KC, Sumant AV, et al. Achieving superlubricity with 2D transition metal carbides (MXenes) and MXene/graphene coatings. Materials Today Advances. 2021; 9: 100133. doi: 10.1016/j.mtadv.2021.100133
[44]Liu Y, Zhang X, Dong S, et al. Synthesis and tribological property of Ti3C2T X nanosheets. Journal of Materials Science. 2016; 52(4): 2200–2209. doi: 10.1007/s10853-016-0509-0
[45]Garg R, Agarwal A, Agarwal M. Synthesis and optimisation of MXene for supercapacitor application. Journal of Materials Science: Materials in Electronics. 2020; 31(21): 18614–18626. doi: 10.1007/s10854-020-04404-5
[46]Jolly S, Paranthaman MP, Naguib M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Materials Today Advances. 2021; 10: 100139. doi: 10.1016/j.mtadv.2021.100139
[47]Modaresi R, Müller DB. The Role of Automobiles for the Future of Aluminum Recycling. Environmental Science & Technology. 2012; 46(16): 8587–8594. doi: 10.1021/es300648w
[48]Naskar AK, Bi Z, Li Y, et al. Tailored recovery of carbons from waste tires for enhanced performance as anodes in lithium-ion batteries. RSC Advances. 2014; 4(72): 38213. doi: 10.1039/c4ra03888f
[49]Garg R, Agarwal A, Agarwal M. Performance of Copper Sulfide Hollow Rods in a Supercapacitor Based on Flexible Substrates. Journal of Electronic Materials. 2021; 50(12): 6974–6980. doi: 10.1007/s11664-021-09162-6
[50]Shao B, Chen X, Chen X, et al. Advancements in MXene Composite Materials for Wearable Sensors: A Review. Sensors. 2024; 24(13): 4092. doi: 10.3390/s24134092
[51]Chu T, Wang G, Zhang X, et al. High-Density Dual-Structure Single-Atom Pt Electrocatalyst for Efficient Hydrogen Evolution and Multimodal Sensing. Nano Letters. 2024; 24(31): 9666–9674. doi: 10.1021/acs.nanolett.4c02428
[52]Chen H, Zhuo F, Zhou J, et al. Advances in graphene-based flexible and wearable strain sensors. Chemical Engineering Journal. 2023; 464: 142576. doi: 10.1016/j.cej.2023.142576
[53]Devaraj M, Rajendran S, Hoang TKA, et al. A review on MXene and its nanocomposites for the detection of toxic inorganic gases. Chemosphere. 2022; 302: 134933. doi: 10.1016/j.chemosphere.2022.134933
[54]Ding W, Yu J, Tsow F, et al. Highly sensitive and reversible MXene-based micro quartz tuning fork gas sensors with tunable selectivity. npj 2D Materials and Applications. 2024; 8(1). doi: 10.1038/s41699-024-00452-1
[55]Wang Z, Han R, Zhang H, et al. An Intrinsically Nonflammable Electrolyte for Prominent‐Safety Lithium Metal Batteries with High Energy Density and Cycling Stability. Advanced Functional Materials. 2023; 33(24). doi: 10.1002/adfm.202215065
[56]Chu T, Zhou Z, Tian P, et al. Nanofluidic sensing inspired by the anomalous water dynamics in electrical angstrom-scale channels. Nature Communications. 2024; 15(1). doi: 10.1038/s41467-024-51877-7
[57]Wu Y, Sun M. Recent progress of MXene as an energy storage material. Nanoscale Horizons. 2024; 2. doi: 10.1039/D3NH00402C
[58]Liang X, Chen Y, Jiao Z, et al. MXene-transition metal sulfide composite electrodes for supercapacitors: Synthesis and electrochemical characterization. Journal of Energy Storage. 2024; 88: 111634. doi: 10.1016/j.est.2024.111634
[59]Saravanan P, Rajeswari S, Kumar JA, et al. Bibliometric analysis and recent trends on MXene research – A comprehensive review. Chemosphere. 2022; 286: 131873. doi: 10.1016/j.chemosphere.2021.131873
Copyright (c) 2024 Ruby Garg, Mohit Agarwal
This work is licensed under a Creative Commons Attribution 4.0 International License.