Chemical material as a hydrogen energy carrier: A review

  • Yunji Kim Water Energy Research Center, Korea Water Resources Corporation, Daejeon 34045, Republic of Korea
  • Heena Yang Water Energy Research Center, Korea Water Resources Corporation, Daejeon 34045, Republic of Korea
Ariticle ID: 1136
88 Views, 49 PDF Downloads
Keywords: hydrogen storage; chemical hydride; catalysis; hydrogenation

Abstract

In light of climate change imperatives, there is a critical need for technological advancements and research endeavors towards clean energy alternatives to replace conventional fossil fuels. Additionally, the development of high-capacity energy storage solutions for global transportability becomes paramount. Hydrogen emerges as a promising environmentally sustainable energy carrier, devoid of carbon dioxide emissions and possessing a high energy density per unit mass. Its versatile applicability spans various sectors, including industry, power generation, and transportation. However, the commercialization of hydrogen necessitates further technological innovations. Notably, high-pressure compression for hydrogen storage presents safety challenges and inherent limitations in storage capacity, resulting in about 30%–50% loss of hydrogen production. Consequently, substantial research endeavors are underway in the domain of material-based chemical hydrogen storage that causes reactions to occur at temperatures below 200 ℃. This approach enables the utilization of existing infrastructure, such as fossil fuels and natural gas, while offering comparatively elevated hydrogen storage capacities. This study aims to introduce recent investigations concerning the synthesis and decomposition mechanisms of chemical hydrogen storage materials, including methanol, ammonia, and Liquid Organic Hydrogen Carrier (LOHC).

References

[1] Bellosta von Colbe J, Ares JR, Barale J, et al. Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. International Journal of Hydrogen Energy. 2019; 44(15): 7780-7808. doi: 10.1016/j.ijhydene.2019.01.104

[2] Bui M, Adjiman CS, Bardow A, et al. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science. 2018; 11(5): 1062-1176. doi: 10.1039/c7ee02342a

[3] Pérez-Fortes M, Schöneberger JC, Boulamanti A, et al. Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Applied Energy. 2016; 161: 718-732. doi: 10.1016/j.apenergy.2015.07.067

[4] Klankermayer J, Wesselbaum S, Beydoun K, et al. Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. Angewandte Chemie International Edition. 2016; 55(26): 7296-7343. doi: 10.1002/anie.201507458

[5] Grinberg D, Elishav O, Bardow A, et al. Nitrogen‐Based Fuels: A Power‐to‐Fuel‐to‐Power Analysis. Angewandte Chemie International Edition. 2016; 55(31): 8798-8805. doi: 10.1002/anie.201510618

[6] Sang R, Wei Z, Hu Y, et al. Methyl formate as a hydrogen energy carrier. Nature Catalysis. 2023; 6(6): 543-550. doi: 10.1038/s41929-023-00959-8

[7] Pfromm PH. Towards sustainable agriculture: Fossil-free ammonia. Journal of Renewable and Sustainable Energy. 2017; 9(3). doi: 10.1063/1.4985090

[8] Philibert C. Producing ammonia and fertilizers: New opportunities from renewables. Available online: https://cdi.mecon.gob.ar/bases/docelec/az3521.pdf (accessed on 2 January 2024).

[9] Hellman A, Honkala K, Dahl S, et al. Ammonia Synthesis: State of the Bellwether Reaction. In: Reedijk J, Poeppelmeier K (editors). Comprehensive Inorganic Chemistry II (Second Edition): From Elements to Applications. Elsevier; 2013. pp. 459-474. doi: 10.1016/b978-0-08-097774-4.00725-7

[10] Tunå P, Hulteberg C, Ahlgren S. Techno‐economic assessment of nonfossil ammonia production. Environmental Progress & Sustainable Energy. 2013; 33(4): 1290-1297. doi: 10.1002/ep.11886

[11] Noelker K, Ruether J. Low energy consumption ammonia production: baseline energy consumption, Options for energy optimization. Available online: https://ucpcdn.thyssenkrupp.com/_legacy/UCPthyssenkruppBAIS/assets.files/download_1/ammonia_2/low_energy_consumption_ammonia_production_2011_paper.pdf (accessed on 2 January 2024).

[12] Cheddie D. Ammonia as a Hydrogen Source for Fuel Cells: A Review. In: Minic D (editor). Hydrogen Energy - Challenges and Perspectives. IntechOpen; 2012. doi: 10.5772/47759

[13] Mukherjee S, Devaguptapu SV, Sviripa A, et al. Low-temperature ammonia decomposition catalysts for hydrogen generation. Applied Catalysis B: Environmental. 2018; 226: 162-181. doi: 10.1016/j.apcatb.2017.12.039

[14] Giddey S, Badwal SPS, Munnings C, et al. Ammonia as a Renewable Energy Transportation Media. ACS Sustainable Chemistry & Engineering. 2017; 5(11): 10231-10239. doi: 10.1021/acssuschemeng.7b02219

[15] Thomas G, Parks G. Potential Roles of Ammonia in a Hydrogen Economy: A Study of Issues Related to the Use Ammonia for On-Board Vehicular Hydrogen Storage. US Department of Energy; 2006.

[16] David WIF, Makepeace JW, Callear SK, et al. Hydrogen Production from Ammonia Using Sodium Amide. Journal of the American Chemical Society. 2014; 136(38): 13082-13085. doi: 10.1021/ja5042836

[17] Makepeace JW, Hunter HMA, Wood TJ, et al. Ammonia decomposition catalysis using lithium–calcium imide. Faraday Discussions. 2016; 188: 525-544. doi: 10.1039/c5fd00179j

[18] Gianotti E, Taillades-Jacquin M, Rozière J, et al. High-Purity Hydrogen Generation via Dehydrogenation of Organic Carriers: A Review on the Catalytic Process. ACS Catalysis. 2018; 8(5): 4660-4680. doi: 10.1021/acscatal.7b04278

[19] Felderhoff M, Weidenthaler C, von Helmolt R, et al. Hydrogen storage: the remaining scientific and technological challenges. Physical Chemistry Chemical Physics. 2007; 9(21): 2643. doi: 10.1039/b701563c

[20] Nielsen TK, Besenbacher F, Jensen TR. Nanoconfined hydrides for energy storage. Nanoscale. 2011; 3(5): 2086. doi: 10.1039/c0nr00725k

[21] Rihko-Struckmann LK, Peschel A, Hanke-Rauschenbach R, et al. Assessment of Methanol Synthesis Utilizing Exhaust CO2 for Chemical Storage of Electrical Energy. Industrial & Engineering Chemistry Research. 2010; 49(21): 11073-11078. doi: 10.1021/ie100508w

[22] Dowson G, Styring P. Conversion of Carbon Dioxide to Oxygenated Organics. In: Styring P, Quadrelli EA, Armstrong K (editors). Carbon Dioxide Utilisation: Closing the Carbon Cycle. Elsevier; 2015. pp. 141-159. doi: 10.1016/b978-0-444-62746-9.00009-8

[23] Pontzen F, Liebner W, Gronemann V, et al. CO2-based methanol and DME – Efficient technologies for industrial scale production. Catalysis Today. 2011; 171(1): 242-250. doi: 10.1016/j.cattod.2011.04.049

[24] Palo DR, Dagle RA, Holladay JD. Methanol Steam Reforming for Hydrogen Production. ChemInform. 2007; 38(51). doi: 10.1002/chin.200751266

[25] Goeppert A, Czaun M, Jones JP, et al. Recycling of carbon dioxide to methanol and derived products – closing the loop. Chemical Society Reviews. 2014; 43(23): 7995-8048. doi: 10.1039/c4cs00122b

[26] Kappis K, Papavasiliou J, Avgouropoulos G. Methanol Reforming Processes for Fuel Cell Applications. Energies. 2021; 14(24): 8442. doi: 10.3390/en14248442

[27] Andersson J, Krüger A, Grönkvist S. Methanol as a carrier of hydrogen and carbon in fossil-free production of direct reduced iron. Energy Conversion and Management: X. 2020; 7: 100051. doi: 10.1016/j.ecmx.2020.100051

[28] Chatterjee S, Parsapur RK, Huang KW. Limitations of Ammonia as a Hydrogen Energy Carrier for the Transportation Sector. ACS Energy Letters. 2021; 6(12): 4390-4394. doi: 10.1021/acsenergylett.1c02189

[29] Bilgili F, Magazzino C. The nexus between the transportation sector and sustainable development goals: Theoretical and practical implications. Frontiers in Environmental Science. 2022; 10. doi: 10.3389/fenvs.2022.1055537

[30] Zhai L, Liu S, Xiang Z. Ammonia as a carbon-free hydrogen carrier for fuel cells: a perspective. Industrial Chemistry & Materials. 2023; 1(3): 332-342. doi: 10.1039/d3im00036b

[31] Ma Y, Guan G, Phanthong P, et al. Steam reforming of methanol for hydrogen production over nanostructured wire-like molybdenum carbide catalyst. International Journal of Hydrogen Energy. 2014; 39(33): 18803-18811. doi: 10.1016/j.ijhydene.2014.09.062

[32] Hou K, Hughes R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chemical Engineering Journal. 2001; 82(1-3): 311-328. doi: 10.1016/S1385-8947(00)00367-3

[33] Jones SD, Hagelin-Weaver HE. Steam reforming of methanol over CeO2- and ZrO2-promoted Cu-ZnO catalysts supported on nanoparticle Al2O3. Applied Catalysis B: Environmental. 2009; 90(1-2): 195-204. doi: 10.1016/j.apcatb.2009.03.013

[34] Smith C, Torrente-Murciano L. Guidance for targeted development of ammonia synthesis catalysts from a holistic process approach. Chem Catalysis. 2021; 1(6): 1163-1172. doi: 10.1016/j.checat.2021.09.015

[35] Chang B, Li L, Shi D, et al. Metal-free boron carbonitride with tunable boron Lewis acid sites for enhanced nitrogen electroreduction to ammonia. Applied Catalysis B: Environmental. 2021; 283: 119622. doi: 10.1016/j.apcatb.2020.119622

[36] Xie T. Performance analysis of ammonia decomposition endothermic membrane reactor heated by trough solar collector. Energy Reports. 2922; 8: 526-538.

[37] Lim DK, Plymill AB, Paik H, et al. Solid Acid Electrochemical Cell for the Production of Hydrogen from Ammonia. Joule. 2020; 4(11): 2338-2347. doi: 10.1016/j.joule.2020.10.006

[38] García A, Marín P, Ordóñez S. Hydrogenation of liquid organic hydrogen carriers: Process scale-up, economic analysis and optimization. International Journal of Hydrogen Energy. 2024; 52: 1113-1123. doi: 10.1016/j.ijhydene.2023.06.273

[39] Andersson J, Grönkvist S. Large-scale storage of hydrogen. International Journal of Hydrogen Energy. 2019; 44(23): 11901-11919. doi: 10.1016/j.ijhydene.2019.03.063

[40] Soloveichik G. Metal borohydrides as hydrogen storage materials. Material Matters. 2007; 2(11).

[41] Liu J, Sun L, Yang J, et al. Ti–Mn hydrogen storage alloys: from properties to applications. RSC Advances. 2022; 12(55): 35744-35755. doi: 10.1039/d2ra07301c

[42] Sahlberg M, Karlsson D, Zlotea C, et al. Superior hydrogen storage in high entropy alloys. Scientific Reports. 2016; 6(1). doi: 10.1038/srep36770

[43] Schneemann A, White JL, Kang S, et al. Nanostructured Metal Hydrides for Hydrogen Storage. Chemical Reviews. 2018; 118(22): 10775-10839. doi: 10.1021/acs.chemrev.8b00313

[44] Larpruenrudee P, Bennett NS, Gu Y, et al. Design optimization of a magnesium-based metal hydride hydrogen energy storage system. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-17120-3

[45] Tarasov B, Arbuzov A, Mozhzhukhin S, et al. Metal Hydride Hydrogen Storage (Compression) Units Operating at Near-Atmospheric Pressure of the Feed H2. Inorganics. 2023; 11(7): 290. doi: 10.3390/inorganics11070290

[46] Kondo R, T. Hiroyuki T. Magnesium-Based Materials for Hydrogen Storage: Microstructural Properties. In: Gupta M (editor). Magnesium - The Wonder Element for Engineering/Biomedical Applications. IntechOpen; 2020. doi: 10.5772/intechopen.88679

[47] Rabkin E, Skripnyuk V, Estrin Y. Ultrafine-Grained Magnesium Alloys for Hydrogen Storage Obtained by Severe Plastic Deformation. Frontiers in Materials. 2019; 6. doi: 10.3389/fmats.2019.00240

[48] Yin F, Chang Y, Si T, et al. Structural and kinetic adjustments of Zr-based high-entropy alloys with Laves phases by substitution of Mg element. Energy Advances. 2023; 2(9): 1409-1418. doi: 10.1039/d3ya00243h

[49] Li Z, Liu S, Pu Y, et al. Single-crystal ZrCo nanoparticle for advanced hydrogen and H-isotope storage. Nature Communications. 2023; 14(1): 7966. doi: 10.1038/s41467-023-43828-5

[50] Lee YJ, Ha J, Choi SJ, et al. Decreasing Hydrogen Content within Zirconium Using Au and Pd Nanoparticles as Sacrificial Agents under Pressurized Water at High Temperature. Materials. 2023; 16(18): 6164. doi: 10.3390/ma16186164

[51] Kamble A, Sharma P, Huot J. Effect of the Addition of 4 wt% Zr to BCC Solid Solution Ti52V12Cr36 at Melting/Milling on Hydrogen Sorption Properties. Frontiers in Materials. 2022; 8. doi: 10.3389/fmats.2021.821126

[52] Song J, Wang J, Hu X, et al. Activation and Disproportionation of Zr2Fe Alloy as Hydrogen Storage Material. Molecules. 2019; 24(8): 1542. doi: 10.3390/molecules24081542

[53] Hu WK, Gao XP, Kiros Y, et al. Zr-Based AB2-Type Hydrogen Storage Alloys as Dual Catalysts of Gas-Diffusion Electrodes in an Alkaline Fuel Cell. The Journal of Physical Chemistry B. 2004; 108(26): 8756-8758. doi: 10.1021/jp0486548

[54] Liang L, Wang F, Rong M, et al. Recent Advances on Preparation Method of Ti-Based Hydrogen Storage Alloy. Journal of Materials Science and Chemical Engineering. 2020; 8(12): 18-38. doi: 10.4236/msce.2020.812003

[55] Loh SM, Grant DM, Walker GS, et al. Substitutional effect of Ti-based AB2 hydrogen storage alloys: A density functional theory study. International Journal of Hydrogen Energy. 2023; 48(35): 13227-13235. doi: 10.1016/j.ijhydene.2022.12.083

[56] Jangir M, Jain IP, Mirabile Gattia D. Effect of Ti-Based Additives on the Hydrogen Storage Properties of MgH2: A Review. Hydrogen. 2023; 4(3): 523-541. doi: 10.3390/hydrogen4030034

[57] Zhou C, Zhang J, Bowman RC, et al. Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. Inorganics. 2021; 9(5): 36. doi: 10.3390/inorganics9050036

[58] Zholdayakova S, Gemma R, Uchida HH, et al. Mechanical Composition Control for Ti-Based Hydrogen Storage Alloys. e-Journal of Surface Science and Nanotechnology. 2018; 16(0): 298-301. doi: 10.1380/ejssnt.2018.298

[59] Liu J, Xu J, Sleiman S, et al. Microstructure and hydrogen storage properties of Ti–V–Cr based BCC-type high entropy alloys. International Journal of Hydrogen Energy. 2021; 46(56): 28709-28718. doi: 10.1016/j.ijhydene.2021.06.137

[60] Munekata Y, Washio K, Suda T, et al. Role of Annealing for Improving Hydrogen Storage Properties of Ti-Cr-V Alloy. MRS Proceedings. 2006; 971. doi: 10.1557/proc-0971-z07-21

[61] Bellon Monsalve D, Ulate-Kolitsky E, Martínez-Amariz AD, et al. Effect of Zr3Fe addition on hydrogen storage behaviour of Ti2CrV alloys. Heliyon. 2023; 9(12): e22537. doi: 10.1016/j.heliyon.2023.e22537

[62] Bouzidi A, Laversenne L, Nassif V, et al. Hydrogen Storage Properties of a New Ti-V-Cr-Zr-Nb High Entropy Alloy. Hydrogen. 2022; 3(2): 270-284. doi: 10.3390/hydrogen3020016

[63] Yu X, Wu Z, Xia B, et al. Hydrogen storage in Ti–V-based body-centered-cubic phase alloys. Journal of Materials Research. 2003; 18(11): 2533-2536. doi: 10.1557/jmr.2003.0352

[64] Mohammed Abdul J, Hearth Chown L, Kolawole Odusote J, et al. Hydrogen Storage Characteristics and Corrosion Behavior of Ti24V40Cr34Fe2 Alloy. Batteries. 2017; 3(4): 19. doi: 10.3390/batteries3020019

[65] Li B, He L, Li J, et al. Ti-V-C-Based Alloy with a FCC Lattice Structure for Hydrogen Storage. Molecules. 2019; 24(3): 552. doi: 10.3390/molecules24030552

[66] Yadav TP, Kumar A, Verma SK, et al. High-Entropy Alloys for Solid Hydrogen Storage: Potentials and Prospects. Transactions of the Indian National Academy of Engineering. 2022; 7(1): 147-156. doi: 10.1007/s41403-021-00316-w

[67] Orłowski PA, Grochala W. Effect of Vanadium Catalysts on Hydrogen Evolution from NaBH4. Solids. 2022; 3(2): 295-310. doi: 10.3390/solids3020021

[68] Niaz S, Manzoor T, Pandith AH. Hydrogen storage: Materials, methods and perspectives. Renewable and Sustainable Energy Reviews. 2015; 50: 457-469. doi: 10.1016/j.rser.2015.05.011

[69] Yadav M, Xu Q. Liquid-phase chemical hydrogen storage materials. Energy & Environmental Science. 2012; 5(12): 9698. doi: 10.1039/c2ee22937d

[70] Kaur M, Pal K. Review on hydrogen storage materials and methods from an electrochemical viewpoint. Journal of Energy Storage. 2019; 23: 234-249. doi: 10.1016/j.est.2019.03.020

[71] Ren J, Musyoka NM, Langmi HW, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. International Journal of Hydrogen Energy. 2017; 42(1): 289-311. doi: 10.1016/j.ijhydene.2016.11.195

[72] Kumar S, Jain A, Ichikawa T, et al. Development of vanadium based hydrogen storage material: A review. Renewable and Sustainable Energy Reviews. 2017; 72: 791-800. doi: 10.1016/j.rser.2017.01.063

[73] Marques F, Balcerzak M, Winkelmann F, et al. Review and outlook on high-entropy alloys for hydrogen storage. Energy & Environmental Science. 2021; 14(10): 5191-5227. doi: 10.1039/d1ee01543e

[74] Rolo I, Costa VAF, Brito FP. Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges. Energies. 2023; 17(1): 180. doi: 10.3390/en17010180

[75] Badea IC, Șerban BA, Anasiei I, et al. The Energy Storage Technology Revolution to Achieve Climate Neutrality. Energies. 2023; 17(1): 140. doi: 10.3390/en17010140

[76] Grigorova E, Markov P, Tsyntsarski B, et al. Hydrogen Storage Properties of Ball Milled MgH2 with Additives- Ni, V and Activated Carbons Obtained from Different By-Products. Materials. 2023; 16(20): 6823. doi: 10.3390/ma16206823

[77] Ahad M, Bhuiyan M, Sakib A, et al. An Overview of Challenges for the Future of Hydrogen. Materials. 2023; 16(20): 6680. doi: 10.3390/ma16206680

[78] Habib AKMA, Sakib AN, Mona ZT, et al. Hydrogen-Assisted Aging Applied to Storage and Sealing Materials: A Comprehensive Review. Materials. 2023; 16(20): 6689. doi: 10.3390/ma16206689

[79] Román-Sedano AM, Campillo B, Villalobos JC, et al. Hydrogen Diffusion in Nickel Superalloys: Electrochemical Permeation Study and Computational AI Predictive Modeling. Materials. 2023; 16(20): 6622. doi: 10.3390/ma16206622

[80] Paskevicius M, Jepsen LH, Schouwink P, et al. Metal borohydrides and derivatives – synthesis, structure and properties. Chemical Society Reviews. 2017; 46(5): 1565-1634. doi: 10.1039/c6cs00705h

[81] Schorn F, Breuer JL, Samsun RC, et al. Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations. Advances in Applied Energy. 2021; 3: 100050. doi: 10.1016/j.adapen.2021.100050

[82] Baxter J, Bian Z, Chen G, et al. Nanoscale design to enable the revolution in renewable energy. Energy & Environmental Science. 2009; 2(6): 559. doi: 10.1039/b821698c

[83] Gondal IA. Offshore renewable energy resources and their potential in a green hydrogen supply chain through power-to-gas. Sustainable Energy & Fuels. 2019; 3(6): 1468-1489. doi: 10.1039/c8se00544c

[84] Sartbaeva A, Kuznetsov VL, Wells SA, et al. Hydrogen nexus in a sustainable energy future. Energy & Environmental Science. 2008; 1(1): 79. doi: 10.1039/b810104n

[85] Mazloomi K, Gomes C. Hydrogen as an energy carrier: Prospects and challenges. Renewable and Sustainable Energy Reviews. 2012; 16(5): 3024-3033. doi: 10.1016/j.rser.2012.02.028

[86] Züttel A, Remhof A, Borgschulte A, et al. Hydrogen: the future energy carrier. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010; 368(1923): 3329-3342. doi: 10.1098/rsta.2010.0113

[87] Eppinger J, Huang K. Formic acid as a hydrogen energy carrier. ACS Energy Letters. 2017; 2(1): 188-195. doi: 10.1021/acsenergylett.6b00574

[88] Lai Q, Sun Y, Wang T, et al. How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks. Advanced Sustainable Systems. 2019; 3(9). doi: 10.1002/adsu.201900043

[89] Behrens M, Marc A. Methanol steam reforming. In: Guczi L, Erdôhelyi A (editors). Catalysis for Alternative Energy Generation. Springer; 2012. pp. 175-235. doi:10.1007/978-1-4614-0344-9_5

[90] Özcan O, Ayşe N. Thermodynamic analysis of methanol steam reforming to produce hydrogen for HT-PEMFC: an optimization study. International Journal of Hydrogen Energy. 2019; 44(27): 14117-14126. doi: 10.1016/j.ijhydene.2018.12.211

[91] Richards N, Needels J, Erickson P. Autothermal-reformation enhancement using a stratified-catalyst technique. International Journal of Hydrogen Energy. 2017; 42(41): 25914-25923. doi: 10.1016/j.ijhydene.2017.08.050

[92] Ahmed AA, Al Labadidi M, Hamada AT, et al. Design and Utilization of a Direct Methanol Fuel Cell. Membranes. 2022; 12(12): 1266. doi: 10.3390/membranes12121266

[93] Cheng Z, Zhou W, Lan G, et al. High-performance Cu/ZnO/Al2O3 catalysts for methanol steam reforming with enhanced Cu-ZnO synergy effect via magnesium assisted strategy. Journal of Energy Chemistry. 2021; 63: 550-557. doi: 10.1016/j.jechem.2021.08.025

[94] Jin Q, Meng X, Wu P, et al. Methanol steam reforming for hydrogen production over NiTiO3 nanocatalyst with hierarchical porous structure. RSC Advances. 2023; 13(24): 16342-16351. doi: 10.1039/d3ra02891g

[95] Lawes N, Gow IE, Smith LR, et al. Methanol synthesis from CO2 and H2 using supported Pd alloy catalysts. Faraday Discussions. 2023; 242: 193-211. doi: 10.1039/d2fd00119e

[96] Mansor M, Timmiati SN, Wong WY, et al. NiPd Supported on Mesostructured Silica Nanoparticle as Efficient Anode Electrocatalyst for Methanol Electrooxidation in Alkaline Media. Catalysts. 2020; 10(11): 1235. doi: 10.3390/catal10111235

[97] Kang Y, Wang W, Pu Y, et al. An effective Pd-NiOx-P composite catalyst for glycerol electrooxidation: Co-existed phosphorus and nickel oxide to enhance performance of Pd. Chemical Engineering Journal. 2017; 308: 419-427. doi: 10.1016/j.cej.2016.09.087

[98] De Rogatis L, Montini T, Cognigni A, et al. Methane partial oxidation on NiCu-based catalysts. Catalysis Today. 2009; 145(1-2): 176-185. doi: 10.1016/j.cattod.2008.04.019

[99] Lu J, Li X, He S, et al. Hydrogen production via methanol steam reforming over Ni-based catalysts: Influences of Lanthanum (La) addition and supports. International Journal of Hydrogen Energy. 2017; 42(6): 3647-3657. doi: 10.1016/j.ijhydene.2016.08.165

[100] Pérez-Hernández R, Avendaño AD, Rubio E, et al. Hydrogen Production by Methanol Steam Reforming Over Pd/ZrO2–TiO2 Catalysts. Topics in Catalysis. 2011; 54(8-9): 572-578. doi: 10.1007/s11244-011-9622-0

[101] Abraham BG, Bhaskaran R, Chetty R. Electrodeposited Bimetallic (PtPd, PtRu, PtSn) Catalysts on Titanium Support for Methanol Oxidation in Direct Methanol Fuel Cells. Journal of The Electrochemical Society. 2020; 167(2): 024512. doi: 10.1149/1945-7111/ab6a7d

[102] Tahay P, Khani Y, Jabari M, et al. Highly porous monolith/TiO2 supported Cu, Cu-Ni, Ru, and Pt catalysts in methanol steam reforming process for H2 generation. Applied Catalysis A: General. 2018; 554: 44-53. doi: 10.1016/j.apcata.2018.01.022

[103] Wang T, Zhao Y, Setzler BP, et al. A high-performance 75 W direct ammonia fuel cell stack. Cell Reports Physical Science. 2022; 3(4): 100829. doi: 10.1016/j.xcrp.2022.100829

[104] Pawelczyk E, Łukasik N, Wysocka I, et al. Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers. Energies. 2022; 15(14): 4964. doi: 10.3390/en15144964

[105] Oh S, Oh MJ, Hong J, et al. A comprehensive investigation of direct ammonia-fueled thin-film solid-oxide fuel cells: Performance, limitation, and prospects. iScience. 2022; 25(9): 105009. doi: 10.1016/j.isci.2022.105009

[106] Hasan MH, Mahlia TMI, Mofijur M, et al. A Comprehensive Review on the Recent Development of Ammonia as a Renewable Energy Carrier. Energies. 2021; 14(13): 3732. doi: 10.3390/en14133732

[107] Klerke A, Christensen CH, Nørskov JK, et al. Ammonia for hydrogen storage: challenges and opportunities. Journal of Materials Chemistry. 2008; 18(20): 2304. doi: 10.1039/b720020j

[108] Lu H, Fengshou Y, Raveendran S. Carbon-Based Catalysts for Selective Electrochemical Nitrogen-to-Ammonia Conversion. ACS Sustainable Chemistry & Engineering. 2021, 9(23): 7687-7703. Doi: doi.org/10.1021/acssuschemeng.1c00575

[109] Jang JH, Park SY, Youn DH, et al. Recent Advances in Electrocatalysts for Ammonia Oxidation Reaction. Catalysts. 2023; 13(5): 803. doi: 10.3390/catal13050803

[110] Morlanés N, Almaksoud W, Rai RK, et al. Development of catalysts for ammonia synthesis based on metal phthalocyanine materials. Catalysis Science & Technology. 2020; 10(3): 844-852. doi: 10.1039/c9cy02326g

[111] Javaid R, Nanba T. Stability of Cs/Ru/MgO Catalyst for Ammonia Synthesis as a Hydrogen and Energy Carrier. Energies. 2022; 15(10): 3506. doi: 10.3390/en15103506

[112] Fedorova ZA, Borisov VA, Pakharukova VP, et al. Layered Double Hydroxide-Derived Ni-Mg-Al Catalysts for Ammonia Decomposition Process: Synthesis and Characterization. Catalysts. 2023; 13(4): 678. doi: 10.3390/catal13040678

[113] Cha J, Park Y, Brigljević B, et al. An efficient process for sustainable and scalable hydrogen production from green ammonia. Renewable and Sustainable Energy Reviews. 2021; 152: 111562. doi: 10.1016/j.rser.2021.111562

[114] Anaya-Castro F de J, Beltrán-Gastélum M, Morales Soto O, et al. Ultra-Low Pt Loading in PtCo Catalysts for the Hydrogen Oxidation Reaction: What Role Do Co Nanoparticles Play? Nanomaterials. 2021; 11(11): 3156. doi: 10.3390/nano11113156

[115] Li ZF, Wang Y, Botte GG. Revisiting the electrochemical oxidation of ammonia on carbon-supported metal nanoparticle catalysts. Electrochimica Acta. 2017; 228: 351-360. doi: 10.1016/j.electacta.2017.01.020

[116] Kang Y, Wang W, Li J, et al. A Highly Efficient Pt-NiO/C Electrocatalyst for Ammonia Electro-Oxidation. Journal of The Electrochemical Society. 2017; 164(9): F958-F965. doi: 10.1149/2.1051709jes

[117] Li J, Wang W, Chen W, et al. Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles.” Nano Research. 2018; 11(9): 4774-4785. doi: 10.1007/s12274-018-2062-4

[118] Zhang H, Alhamed YA, Al-Zahrani A, et al. Tuning catalytic performances of cobalt catalysts for clean hydrogen generation via variation of the type of carbon support and catalyst post-treatment temperature. International Journal of Hydrogen Energy. 2014; 39(31): 17573-17582. doi: 10.1016/j.ijhydene.2014.07.183

[119] Nagaoka K, Eboshi T, Abe N, et al. Influence of basic dopants on the activity of Ru/Pr6O11 for hydrogen production by ammonia decomposition. International Journal of Hydrogen Energy. 2014; 39(35): 20731-20735. doi: 10.1016/j.ijhydene.2014.07.142

[120] Li G, Nagasawa H, Kanezashi M, et al. Graphene nanosheets supporting Ru nanoparticles with controlled nanoarchitectures form a high-performance catalyst for COx-free hydrogen production from ammonia. Journal of Materials Chemistry A. 2014; 2(24): 9185-9192. doi: 10.1039/c4ta01193g

[121] Duan X, Qian G, Zhou X, et al. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Applied Catalysis B: Environmental. 2011; 101(3-4): 189-196. doi: 10.1016/j.apcatb.2010.09.017

[122] Zhang J, Müller JO, Zheng W, et al. Individual Fe−Co Alloy Nanoparticles on Carbon Nanotubes: Structural and Catalytic Properties. Nano Letters. 2008; 8(9): 2738-2743. doi: 10.1021/nl8011984

[123] Yin SF, Zhang QH, Xu BQ, et al. Investigation on the catalysis of COx-free hydrogen generation from ammonia. Journal of Catalysis. 2004; 224(2): 384-396. doi: 10.1016/j.jcat.2004.03.008

[124] Eblagon KM, Rentsch D, Friedrichs O, et al. Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier. International Journal of Hydrogen Energy. 2010; 35(20): 11609-11621. doi: 10.1016/j.ijhydene.2010.03.068

[125] Bourane A, Elanany M, Pham TV, et al. An overview of organic liquid phase hydrogen carriers. International Journal of Hydrogen Energy. 2016; 41(48): 23075-23091. doi: 10.1016/j.ijhydene.2016.07.167

[126] Pujadó P, Moser M. Catalytic reforming: Handbook of petroleum processing. Dordrecht. Springer Netherlands; 2006. pp. 217-237. doi: 10.1007/1-4020-2820-2_5

[127] Crabtree RH. Nitrogen-Containing Liquid Organic Hydrogen Carriers: Progress and Prospects. ACS Sustainable Chemistry & Engineering. 2017; 5(6): 4491-4498. doi: 10.1021/acssuschemeng.7b00983

[128] Brückner N, Obesser K, Bösmann A, et al. Evaluation of Industrially Applied Heat‐Transfer Fluids as Liquid Organic Hydrogen Carrier Systems. ChemSusChem. 2013; 7(1): 229-235. doi: 10.1002/cssc.201300426

[129] Preuster P, Papp C, Wasserscheid P. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy. Accounts of Chemical Research. 2016; 50(1): 74-85. doi: 10.1021/acs.accounts.6b00474

[130] Rüde T, Bösmann A, Preuster P, et al. Resilience of Liquid Organic Hydrogen Carrier Based Energy‐Storage Systems. Energy Technology. 2017; 6(3): 529-539. doi: 10.1002/ente.201700446

[131] Acharya D, Ng D, Xie Z. Recent Advances in Catalysts and Membranes for MCH Dehydrogenation: A Mini Review. Membranes. 2021; 11(12): 955. doi: 10.3390/membranes11120955

[132] Le TH, Tran N, Lee HJ. Development of Liquid Organic Hydrogen Carriers for Hydrogen Storage and Transport. International Journal of Molecular Sciences. 2024; 25(2): 1359. doi: 10.3390/ijms25021359

[133] Schuster R, Bertram M, Runge H, et al. Metastability of palladium carbide nanoparticles during hydrogen release from liquid organic hydrogen carriers. Physical Chemistry Chemical Physics. 2021; 23(2): 1371-1380. doi: 10.1039/d0cp05606e

[134] Abdin Z, Tang C, Liu Y, et al. Large-scale stationary hydrogen storage via liquid organic hydrogen carriers. iScience. 2021; 24(9): 102966. doi: 10.1016/j.isci.2021.102966

[135] Sun F, An Y, Lei L, et al. Identification of the starting reaction position in the hydrogenation of (N-ethyl)carbazole over Raney-Ni. Journal of Energy Chemistry. 2015; 24(2): 219-224. doi: 10.1016/S2095-4956(15)60304-7

[136] Rao P, Yoon M. Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress. Energies. 2020; 13(22): 6040. doi: 10.3390/en13226040

[137] Chen X, Gierlich CH, Schötz S, et al. Hydrogen Production Based on Liquid Organic Hydrogen Carriers through Sulfur Doped Platinum Catalysts Supported on TiO2. ACS Sustainable Chemistry & Engineering. 2021; 9(19): 6561-6573. doi: 10.1021/acssuschemeng.0c09048

[138] Niermann M, Beckendorff A, Kaltschmitt M, et al. Liquid Organic Hydrogen Carrier (LOHC) – Assessment based on chemical and economic properties. International Journal of Hydrogen Energy. 2019; 44(13): 6631-6654. doi: 10.1016/j.ijhydene.2019.01.199

[139] Niermann M, Drünert S, Kaltschmitt M, et al. Liquid organic hydrogen carriers (LOHCs) – techno-economic analysis of LOHCs in a defined process chain. Energy & Environmental Science. 2019; 12(1): 290-307. doi: 10.1039/c8ee02700e

[140] Tang C, Feng Z, Bai X. In situ preparation of Pd nanoparticles on N-doped graphitized carbon derived from ZIF-67 by nitrogen glow-discharge plasma for the catalytic dehydrogenation of dodecahydro-N-ethylcarbazole. Fuel. 2021; 302: 121186. doi: 10.1016/j.fuel.2021.121186

[141] Yang J, Fan Y, Li ZL, et al. Bimetallic Pd-M (M = Pt, Ni, Cu, Co) nanoparticles catalysts with strong electrostatic metal-support interaction for hydrogenation of toluene and benzene. Molecular Catalysis. 2020; 492: 110992. doi: 10.1016/j.mcat.2020.110992

[142] Yang Y, Lin X, Tang J, et al. Supported mesoporous Pt catalysts with excellent performance for toluene hydrogenation under low reaction pressure. Molecular Catalysis. 2022; 524: 112341. doi: 10.1016/j.mcat.2022.112341

[143] Zhu L, Shan S, Petkov V, et al. Ruthenium–nickel–nickel hydroxide nanoparticles for room temperature catalytic hydrogenation. Journal of Materials Chemistry A. 2017; 5(17): 7869-7875. doi: 10.1039/c7ta01437f

[144] Zhang M, Song Q, He Z, et al. Tuning the mesopore-acid-metal balance in Pd/HY for efficient deep hydrogenation saturation of naphthalene. International Journal of Hydrogen Energy. 2022; 47(48): 20881-20893. doi: 10.1016/j.ijhydene.2022.04.191

[145] Ding Y, Dong Y, Zhang H, et al. A highly adaptable Ni catalyst for Liquid Organic Hydrogen Carriers hydrogenation. International Journal of Hydrogen Energy. 2021; 46(53): 27026-27036. doi: 10.1016/j.ijhydene.2021.05.196

[146] Jorschick H, Preuster P, Dürr S, et al. Hydrogen storage using a hot pressure swing reactor. Energy & Environmental Science. 2017; 10(7): 1652-1659. doi: 10.1039/c7ee00476a

Published
2024-05-23
How to Cite
Kim, Y., & Yang, H. (2024). Chemical material as a hydrogen energy carrier: A review. Energy Storage and Conversion, 2(2), 1136. https://doi.org/10.59400/esc.v2i2.1136
Section
Review