A study of the underlying dynamics of phase-space projection of microwave-assisted synthesis of transition metal nanostructures
Abstract
The study brings together in a single publication the phase-space projection analysis of microwave-assisted synthesis of transition monometallic (palladium, silver, platinum, and gold), binary zinc oxide, and metals supported on carbon framework nanostructures. It is shown for a database of fifty microwave-assisted syntheses, a two-variable power-law signature (y = cxn) over four orders of magnitude. The purpose of this study is therefore to identify the underlying dynamics of the power-law signature. A dual allometry test is used to discriminate between transition metal period and row, and between recommended Green Chemistry, problematic Green Chemistry, and non-Green Chemistry hazardous solvents. Typically, recommended Green Chemistry exhibits a broad y-axis distribution within an upper exponent = 1 and lower exponent = 0.5. Problematic Green Chemistry exhibits a y-axes narrower distribution with an upper exponent = 0.94 and a lower exponent = 0.64. Non-Green Chemistry hazardous data shows a further narrowing of the y-axis distribution within upper exponent = 0.87 and lower exponent = 0.66. Mass-based environmental factor is used to calculate the ‘Greenness’ of single-step (facile) transition metal synthesis. The power-law signature also exhibits phase transitions associated with microwave applicator type.
References
[1]Mehta G, Krief A, Hopf H, et al. Chemistry in a post-Covid-19 world. AsiaChem Magazine. 2020; 1(1). doi: 10.51167/acm00013
[2]Anastas PT, Farris CA. Benign by Design. ACS Symposium Series; 1994.
[3]Anastas P, Eghbali N. Green Chemistry: Principles and Practice. Chem Soc Rev. 2010; 39(1): 301-312. doi: 10.1039/b918763b
[4]Bharadwaj KK, Rabha B, Pati S, et al. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules. 2021; 26(21): 6389. doi: 10.3390/molecules26216389
[5]Law VJ, Dowling DP. Revisiting “Non-Thermal” Batch Microwave Oven Inactivation of Microorganisms. American Journal of Analytical Chemistry. 2023; 14(01): 28-54. doi: 10.4236/ajac.2023.141003
[6]Law VJ, Dowling DP. Microwave-Assisted Au and Ag Nanoparticle Synthesis: An Energy Phase-Space Projection Analysis. American Journal of Analytical Chemistry. 2023; 14(04): 149-174. doi: 10.4236/ajac.2023.144009
[7]Law VJ, Dowling DP. Microwave-Assisted Transition Metal Nanostructure Synthesis: Power-Law Signature Verification. American Journal of Analytical Chemistry. 2023; 14(08): 326-349. doi: 10.4236/ajac.2023.148018
[8]Law VJ, Dowling DP. Green Chemistry Allometry Test of Microwave-Assisted Synthesis of Transition Metal Nanostructures. American Journal of Analytical Chemistry. 2023; 14(11): 493-518. doi: 10.4236/ajac.2023.1411029
[9]Andriani P, McKelvey B. Perspective—From Gaussian to Paretian Thinking: Causes and Implications of Power Laws in Organizations. Organization Science. 2009; 20(6): 1053-1071. doi: 10.1287/orsc.1090.0481
[10]Stumpf MPH, Porter MA. Critical Truths About Power Laws. Science. 2012; 335(6069): 665-666. doi: 10.1126/science.1216142
[11]Roman S, Bertolotti F. A master equation for power laws. Royal Society Open Science. 2022; 9(12). doi: 10.1098/rsos.220531
[12]Hınıs M, Yeşildal TK, Erdönmez D, et al. Green Synthesis of Silver Nanoparticles from Sumac Extract by Microwave- Assisted and Traditional Method: Characterization, Anticancer and Antimicrobial Activities. Springer Science and Business Media LLC; 2024.
[13]Sheldon RA. Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACS Sustainable Chemistry & Engineering. 2017; 6(1): 32-48. doi: 10.1021/acssuschemeng.7b03505
[14]Bondarenko O, Juganson K, Ivask A, et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Archives of Toxicology. 2013; 87(7): 1181-1200. doi: 10.1007/s00204-013-1079-4
[15]Liu S, Maljovec D, Wang B, et al. Visualizing High-Dimensional Data: Advances in the Past Decade. IEEE Transactions on Visualization and Computer Graphics. 2017; 23(3): 1249-1268. doi: 10.1109/tvcg.2016.2640960
[16]Andresen B, Shiner JS, Uehlinger DE. Allometric scaling and maximum efficiency in physiological eigen time. Proceedings of the National Academy of Sciences. 2002; 99(9): 5822-5824. doi: 10.1073/pnas.082633699
[17]Huxley JS, Teissier G. Terminology of Relative Growth. Nature. 1936; 137(3471): 780-781. doi: 10.1038/137780b0
[18]Huxley JS, Teissier G. Terminologie et notation dans la description de la croissance relative. Comptes rendus des séances de la Société de biologie et de ses filiales. 1936; 121: 934-937.
[19]Morsy SMI. Role of surfactants in nanotechnology and their applications. International Journal of Current. Microbiology and Applied Science. 2014; 3(5): 237-260.
[20]Ballhausen CJ. Molecular electronic structures of transition metal complexes. McGraw-Hill International Book Company; 1979.
[21]Murr LE. Handbook of Materials Structures, Properties, Processing and Performance. Springer Nature Link; 2015.
[22]Cao J, Wang J, Fang B, et al. Microwave-assisted Synthesis of Flower-like ZnO Nanosheet Aggregates in a Room-temperature Ionic Liquid. Chemistry Letters. 2004; 33(10): 1332-1333. doi: 10.1246/cl.2004.1332
[23]Li H, Liu E tao, Chan FYF, et al. Fabrication of ordered flower-like ZnO nanostructures by a microwave and ultrasonic combined technique and their enhanced photocatalytic activity. Materials Letters. 2011; 65(23-24): 3440-3443. doi: 10.1016/j.matlet.2011.07.049
[24]Cao Y, Liu B, Huang R, et al. Flash synthesis of flower-like ZnO nanostructures by microwave-induced combustion process. Materials Letters. 2011; 65(2): 160-163. doi: 10.1016/j.matlet.2010.09.072
[25]Li X, Wang C, Zhou X, et al. Gas sensing properties of flower-like ZnO prepared by a microwave-assisted technique. RSC Adv. 2014; 4(88): 47319-47324. doi: 10.1039/c4ra07425d
[26]Hasanpoor M, Aliofkhazraei M, Delavari H. Microwave-assisted Synthesis of Zinc Oxide Nanoparticles. Procedia Materials Science. 2015; 11: 320-325. doi: 10.1016/j.mspro.2015.11.101
[27]Krishnapriya R, Praneetha S, Murugan AV. Investigation of the effect of reaction parameters on the microwave-assisted hydrothermal synthesis of hierarchical jasmine-flower-like ZnO nanostructures for dye-sensitized solar cells. New Journal of Chemistry. 2016; 40(6): 5080-5089. doi: 10.1039/c6nj00457a
[28]Wojnarowicz J, Opalinska A, Chudoba T, et al. Effect of Water Content in Ethylene Glycol Solvent on the Size of ZnO Nanoparticles Prepared Using Microwave Solvothermal Synthesis. Journal of Nanomaterials. 2016; 2016: 1-15. doi: 10.1155/2016/2789871
[29]Wojnarowicz J, Chudoba T, Gierlotka S, et al. Size Control of Cobalt-Doped ZnO Nanoparticles Obtained in Microwave Solvothermal Synthesis. Crystals. 2018; 8(4): 179. doi: 10.3390/cryst8040179
[30]Liu H, Liu H, Yang J, et al. Microwave-assisted one-pot synthesis of Ag decorated flower-like ZnO composites photocatalysts for dye degradation and NO removal. Ceramics International. 2019; 45(16): 20133-20140. doi: 10.1016/j.ceramint.2019.06.279
[31]Aljaafari A, Ahmed F, Awada C, et al. Flower-Like ZnO Nanorods Synthesized by Microwave-Assisted One-Pot Method for Detecting Reducing Gases: Structural Properties and Sensing Reversibility. Frontiers in Chemistry. 2020; 8. doi: 10.3389/fchem.2020.00456
[32]Cai Y, Huang J. Preparation and Photocatalysis Characteristics of Flower-like ZnO by Microwave Method. Journal of Physics: Conference Series. 2023; 2437(1): 012039. doi: 10.1088/1742-6596/2437/1/012039
[33]Elazab HA, Moussa S, Gupton BF, et al. Microwave-assisted synthesis of Pd nanoparticles supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates and catalysis application for CO oxidation. Journal of Nanoparticle Research. 2014; 16(7). doi: 10.1007/s11051-014-2477-0
[34]Elazab HA, Sadek MA, El-Idreesy TT. Microwave-assisted synthesis of palladium nanoparticles supported on copper oxide in aqueous medium as an efficient catalyst for Suzuki cross-coupling reaction. Adsorption Science & Technology. 2018; 36(5-6): 1352-1365. doi: 10.1177/0263617418771777
[35]Rademacher L, Beglau THY, Heinen T, et al. Microwave-assisted synthesis of iridium oxide and palladium nanoparticles supported on a nitrogen-rich covalent triazine framework as superior electrocatalysts for the hydrogen evolution and oxygen reduction reaction. Frontiers in Chemistry. 2022; 10. doi: 10.3389/fchem.2022.945261
[36]Chen J, Wang J, Zhang X, et al. Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Materials Chemistry and Physics. 2008; 108(2-3): 421-424. doi: 10.1016/j.matchemphys.2007.10.019
[37]Blosi M, Albonetti S, Gatti F, et al. Au, Ag and Au-Ag nanoparticles: microwave-assisted synthesis in water and applications in ceramic and catalysis. Nanotech. 2010; 1: 352-355.
[38]Saha S, Malik MM, Qureshi MS. Microwave Synthesis of Silver Nanoparticles. Nano Hybrids. 2013; 4: 99-112. doi: 10.4028/www.scientific.net/nh.4.99
[39]Iqbal N, Abdul Kadir MR, Nik Malek NAN, et al. Characterization and antibacterial properties of stable silver substituted hydroxyapatite nanoparticles synthesized through surfactant assisted microwave process. Materials Research Bulletin. 2013; 48(9): 3172-3177. doi: 10.1016/j.materresbull.2013.04.068
[40]Pal J, Deb MK, Deshmukh DK. Microwave-assisted synthesis of silver nanoparticles using benzo-18-crown-6 as reducing and stabilizing agent. Applied Nanoscience. 2013; 4(4): 507-510. doi: 10.1007/s13204-013-0229-6
[41]Rai P, Majhi SM, Yu YT, et al. Synthesis of plasmonic Ag@SnO2 core–shell nanoreactors for xylene detection. RSC Advances. 2015; 5(23): 17653-17659. doi: 10.1039/c4ra13971b
[42]Karimipour M, Mollaei M, Shabani E, et al. Microwave synthesis of Oleylamine -capped Ag nanoparticles in aqueous solution. Materials Science. 2015; 21(2). doi: 10.5755/j01.ms.21.2.6480
[43]Ebrahimi M, Zakery A, Karimipour M, et al. Nonlinear optical properties and optical limiting measurements of graphene oxide – Ag@TiO2 compounds. Optical Materials. 2016; 57: 146-152. doi: 10.1016/j.optmat.2016.04.039
[44]Karimipour M, Mostoufirad S, Molaei M, et al. Free reducing agent, one pot, and two steps synthesis of Ag@SiO2 core-shells using microwave irradiation. Journal of Nano- And Electronic Physics. 2016; 8(3).
[45]Miglietta ML, Alfano B, Polichetti T, et al. Effective tuning of silver decorated graphene sensing properties by adjusting the Ag NPs coverage density. Springer International Publishing; 2018.
[46]Jyothi D, Cheriyan SP, Ahmed SRR, et al. TG. Microwave assisted green synthesis of silver nanoparticles using coleus amboinicus leaf extract. International Journal of Applied Pharmaceutics; 2020.
[47]Ahmed F, AlOmar SY, Albalawi F, et al. Microwave Mediated Fast Synthesis of Silver Nanoparticles and Investigation of Their Antibacterial Activities for Gram-Positive and Gram-Negative Microorganisms. Crystals. 2021; 11(6): 666. doi: 10.3390/cryst11060666
[48]Li D, Komarneni S. Synthesis of Pt Nanoparticles and Nanorods by Microwave-assisted Solvothermal Technique. Zeitschrift für Naturforschung B. 2006; 61(12): 1566-1572. doi: 10.1515/znb-2006-1214
[49]Kundu P, Nethravathi C, Deshpande PA, et al. Ultrafast Microwave-Assisted Route to Surfactant-Free Ultrafine Pt Nanoparticles on Graphene: Synergistic Co-reduction Mechanism and High Catalytic Activity. Chemistry of Materials. 2011; 23(11): 2772-2780. doi: 10.1021/cm200329a
[50]Pal J, Deb MK, Deshmukh DK, et al. Microwave-assisted synthesis of platinum nanoparticles and their catalytic degradation of methyl violet in aqueous solution. Applied Nanoscience. 2012; 4(1): 61-65. doi: 10.1007/s13204-012-0170-0
[51]Wojnicki M, Luty-Błocho M, Kwolek P, et al. The influence of dielectric permittivity of water on the shape of PtNPs synthesized in high-pressure high-temperature microwave reactor. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-84388-2
[52]Liu FK, Huang PW, Chang YC, et al. Formation of silver nanorods by microwave heating in the presence of gold seeds. Journal of Crystal Growth. 2005; 273(3-4): 439-445. doi: 10.1016/j.jcrysgro.2004.09.043
[53]Mallikarjuna NN, Varma RS. Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Crystal Growth & Design. 2007; 7(4): 686-690.
[54]Yasmin A, Ramesh K, Rajeshkumar S. Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Convergence. 2014; 1(1). doi: 10.1186/s40580-014-0012-8
[55]Bhosale MA, Chenna DR, Ahire JP, et al. Morphological study of microwave-assisted facile synthesis of gold nanoflowers/nanoparticles in aqueous medium and their catalytic application for reduction of p-nitrophenol to p-aminophenol. RSC Advances. 2015; 5(65): 52817-52823. doi: 10.1039/c5ra05731k
[56]Ngo VKT, Nguyen HPU, Huynh TP, et al. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157: H7. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2015; 6(3): 035015. doi: 10.1088/2043-6262/6/3/035015
[57]Bayazit MK, Yue J, Cao E, et al. Controllable Synthesis of Gold Nanoparticles in Aqueous Solution by Microwave Assisted Flow Chemistry. ACS Sustainable Chemistry & Engineering. 2016; 4(12): 6435-6442. doi: 10.1021/acssuschemeng.6b01149
[58]Shah KW, Zheng L. Microwave-assisted Synthesis of Hexagonal Gold Nanoparticles Reduced by Organosilane (3-Mercaptopropyl) trimethoxysilane. Materials. 2019; 12(10): 1680. doi: 10.3390/ma12101680
[59]Marinoiu A, Andrei R, Vagner I, et al. One Step Synthesis of Au Nanoparticles Supported on Graphene Oxide Using an Eco-Friendly Microwave-Assisted Process. Materials Science. 2020; 26(3): 249-254. doi: 10.5755/j01.ms.26.3.21857
[60]Putri SE, Pratiwi DE, Side S. The Effect Of Microwave Irradiation on Synthesis of Gold Nanoparticles Using Ethanol Extract of White Bol Guava Leaves. Journal of Physics: Conference Series. 2021; 1752(1): 012058. doi: 10.1088/1742-6596/1752/1/012058
[61]Ngo VKT, Nguyen DG, Huynh TP, et al. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia Coli O157: H7 bacteria. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016; 7(3): 035016. doi: 10.1088/2043-6262/7/3/035016
[62]Kianpour M, Akbarian M, Uversky VN. Nanoparticles for Coronavirus Control. Nanomaterials. 2022; 12(9): 1602. doi: 10.3390/nano12091602
[63]Kunal P, Toops TJ. A Review of Microwave-Assisted Synthesis-Based Approaches to Reduce Pd-Content in Catalysts. Catalysts. 2020; 10(9): 991. doi: 10.3390/catal10090991
[64]Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists. Journal of Nanobiotechnology. 2022; 20(1). doi: 10.1186/s12951-022-01477-8
[65]Baranov AN, Sokolov PS, Solozhenko VL. ZnO under Pressure: From Nanoparticles to Single Crystals. Crystals. 2022; 12(5): 744. doi: 10.3390/cryst12050744
[66]Teterycz H, Rac O, Suchorska-Woźnaik P, et al. The formation mechanism of colloidal spheres of ZnO in ethylene glycol. Digest Journal of Nanomaterials and Biostructures. 2013; 8(3): 1157-1167.
[67]Yang F, Gong J, Yang E, et al. Microwave-absorbing properties of room-temperature ionic liquids. Journal of Physics D: Applied Physics. 2019; 52(15): 155302. doi: 10.1088/1361-6463/ab016c
[68]Kustov L, Vikanova K. Synthesis of Metal Nanoparticles under Microwave Irradiation: Get Much with Less Energy. Metals. 2023; 13(10): 1714. doi: 10.3390/met13101714
[69]Law VJ, Dowling DP. Application of microwave oven plasma reactors for the formation of carbon-based nanomaterials. In: Skiadas C, Diomtiakis Y (editors). 13th Chaotic Modeling and Simulation International Conference. Springer, Berlin; 2021. pp. 467-486.
[70]Kawasaki H. Surfactant-free solution-based synthesis of metallic nanoparticles toward efficient use of the nanoparticles’ surfaces and their application in catalysis and chemo-/biosensing. Nanotechnology Reviews. 2013; 2(1): 5-25. doi: 10.1515/ntrev-2012-0079
[71]Rana KK, Rana S. Microwave Reactors: A Brief Review on Its Fundamental Aspects and Applications. OALib. 2014; 01(06): 1-20. doi: 10.4236/oalib.1100686
[72]Patil NG, Rebrov EV, Eranen K, et al. Effect of the Load Size on the Efficiency of Microwave Heating Under Stop Flow and Continuous Flow Conditions. Journal of Microwave Power and Electromagnetic Energy. 2012; 46(2): 83-92. doi: 10.1080/08327823.2012.11689827
[73]Law VJ, Dowling DP. Microwave generated steam decontamination of respirators: dielectric considerations. GJRECS. 2021; 1(2): 6-2.
[74]Welton T. Solvents and sustainable chemistry. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015; 471(2183): 20150502. doi: 10.1098/rspa.2015.0502
[75]Gaba M, Dhingra N. Microwave chemistry: general features and applications. Indian Journal of Pharmaceutical Education and Research. 2011; 45(2): 175 – 182.
[76]Harpeness R, Gedanken A. Microwave Synthesis of Core−Shell Gold/Palladium Bimetallic Nanoparticles. Langmuir. 2004; 20(8): 3431-3434. doi: 10.1021/la035978z
[77]Abdelsayed V, Aljarash A, El-Shall MS, et al. Microwave Synthesis of Bimetallic Nanoalloys and CO Oxidation on Ceria-Supported Nanoalloys. Chemistry of Materials. 2009; 21(13): 2825-2834. doi: 10.1021/cm9004486
[78]Siamaki AR, Khder AERS, Abdelsayed V, et al. Microwave-assisted synthesis of palladium nanoparticles supported on graphene: A highly active and recyclable catalyst for carbon–carbon cross-coupling reactions. Journal of Catalysis. 2011; 279(1): 1-11. doi: 10.1016/j.jcat.2010.12.003
[79]Rai P, Kim SG, Yu YT. Microwave assisted synthesis of flower-like ZnO and effect of annealing atmosphere on its photoluminescence property. Journal of Materials Science: Materials in Electronics. 2011; 23(2): 344-348. doi: 10.1007/s10854-011-0384-z
[80]Prakash T, Jayaprakash R, Neri G, et al. Synthesis of ZnO Nanostructures by Microwave Irradiation Using Albumen as a Template. Journal of Nanoparticles. 2013; 2013: 1-8. doi: 10.1155/2013/274894
[81]Zhang J, Bai X. Microwave-Assisted Synthesis of Pd Nanoparticles and Catalysis Application for Suzuki Coupling Reactions. The Open Materials Science Journal. 2017; 11(1): 1-8. doi: 10.2174/1874088x01711010001
[82]Gomez-Bolivar J, Mikheenko IP, Macaskie LE, et al. Characterization of Palladium Nanoparticles Produced by Healthy and Microwave-Injured Cells of Desulfovibrio desulfuricans and Escherichia coli. Nanomaterials. 2019; 9(6): 857. doi: 10.3390/nano9060857
[83]Nishida Y, Wada Y, Chaudhari C, et al. Preparation of Noble-metal Nanoparticles by Microwave-assisted Chemical Reduction and Evaluation as Catalysts for Nitrile Hydrogenation under Ambient Conditions. Journal of the Japan Petroleum Institute. 2019; 62(5): 220-227. doi: 10.1627/jpi.62.220
[84]Yalcin M. Microwave-assisted synthesis of ZnO nanoflakes: structural, optical and dielectric characterization. Materials Research Express. 2020; 7(5): 055019. doi: 10.1088/2053-1591/ab940f
[85]Jaimes-Paez CD, Vences-Alvarez E, Salinas-Torres D, et al. Microwave-assisted synthesis of carbon-supported Pt nanoparticles for their use as electrocatalysts in the oxygen reduction reaction and hydrogen evolution reaction. Electrochimica Acta. 2023; 464: 142871. doi: 10.1016/j.electacta.2023.142871
[86]El-Naggar ME, Shaheen TI, Fouda MMG, et al. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core–shell silver–gold nanoparticles. Carbohydrate Polymers. 2016; 136: 1128-1136. doi: 10.1016/j.carbpol.2015.10.003
[87]Lindstedt SL, Calder, WA. Body Size, Physiological Time, and Longevity of Homeothermic Animals. The Quarterly Review of Biology. 1981; 56(1): 1-16. doi: 10.1086/412080
[88]Law VJ. Microwave near-field plasma probe. Vacuum. 1998; 51(3): 463-468. doi:10.1016/S0042-207X(98)00199-7
[89]Geedipalli SSR, Rakesh V, Datta AK. Modeling the heating uniformity contributed by a rotating turntable in microwave ovens. Journal of Food Engineering. 2007; 82(3): 359-368. doi: 10.1016/j.jfoodeng.2007.02.050
[90]Dong H, Li M, Liu R, et al. Allometric scaling in scientific fields. Scientometrics. 2017; 112(1): 583-594. doi: 10.1007/s11192-017-2333-y
[91]Kleiber M. Body size and metabolism. Hilgardia. 1932; 6(11): 315-353. doi: 10.3733/hilg.v06n11p315
[92]Kleiber M. Body size and metabolic rate. Physiological Reviews. 1947; 27(4): 511-541. doi: 10.1152/physrev.1947.27.4.511
[93]Gillooly JF, Brown JH, West GB, et al. Effects of Size and Temperature on Metabolic Rate. Science. 2001; 293(5538): 2248-2251. doi: 10.1126/science.1061967
[94]Downs CJ, Hayes JP, Tracy CR. Scaling metabolic rate with body mass and inverse body temperature: a test of the Arrhenius fractal supply model. Functional Ecology. 2007; 22(2): 239-244. doi: 10.1111/j.1365-2435.2007.01371.x
[95]Rau ARP. Biological scaling and physics. Journal of Biosciences. 2002; 27(5): 475-478. doi: 10.1007/bf02705043
[96]Agutter PS, Tuszynski JA. Analytic theories of allometric scaling. Journal of Experimental Biology. 2011; 214(7): 1055-1062. doi: 10.1242/jeb.054502
[97]Niklas KJ, Kutschera U. Kleiber’s Law: How theFire of Lifeignited debate, fueled theory, and neglected plants as model organisms. Plant Signaling & Behavior. 2015; 10(7): e1036216. doi: 10.1080/15592324.2015.1036216
[98]Lamont BB, Williams MR, He T. Relative growth rate (RGR) and other confounded variables: mathematical problems and biological solutions. Annals of Botany. 2023; 131(4): 555-568. doi: 10.1093/aob/mcad031
[99]Alfano B, Polichetti T, Mauriello M, et al. Modulating the sensing properties of graphene through an eco-friendly metal-decoration process. Sensors and Actuators B: Chemical. 2016; 222: 1032-1042. doi: 10.1016/j.snb.2015.09.008
[100]Min GI, Han SJ, Shin DM. Inverter circuit of microwave oven. US Patent 6936803B2; 2005.
Copyright (c) 2025 Victor J. Law, Denis P. Dowling
This work is licensed under a Creative Commons Attribution 4.0 International License.