The negative differential resistance of nitrogen implanted TiO2

  • Chun-Ming Liu School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
Ariticle ID: 1556
136 Views, 85 PDF Downloads
Keywords: negative differential resistance; nitrogen implanted TiO2; light assistance

Abstract

The microstructure and negative differential resistance (NDR) effect of nitrogen implanted rutile TiO2 were investigated by measuring the XPS, Raman spectra and current voltage curves. It was found that the light illumination has large influence on the NDR effect. Under the illumination of 60 mW laser light, a large NDR with a small electric field (1250 V/cm) is obtained. This electric field is about three orders smaller than that reported in literature (1×106 V/cm). The electric field induced tunneling is the possible mechanism of electric transport at higher field region. The NDR is thought to be related to the light and nitrogen dopant induced reaction including the destroying of water, the scavenging of electron, and the surface oxidation transform of non-stoichiometric TiO2−x to stoichiometric insulating state. The results of this paper are not only useful in understanding the mechanism of NDR, but also useful in providing an effective method in manipulation NDR.

References

[1] Di Valentin C, Finazzi E, Pacchioni G, et al. N-doped TiO2: Theory and experiment. Chemical Physics. 2007; 339(1-3): 44-56. doi: 10.1016/j.chemphys.2007.07.020

[2] Wang H, Lewis JP. Second-generation photocatalytic materials: anion-doped TiO2. Journal of Physics: Condensed Matter. 2005; 18(2): 421-434. doi: 10.1088/0953-8984/18/2/006

[3] Chen X, Burda C. Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. The Journal of Physical Chemistry B. 2004; 108(40): 15446-15449. doi: 10.1021/jp0469160

[4] Liu CM, Xiang X, Zhang Y, et al. Magnetism of a Nitrogen-Implanted TiO2 Single Crystal. Chinese Physics Letters. 2011; 28(12): 127201. doi: 10.1088/0256-307x/28/12/127201

[5] Tao JG, Guan LX, Pan JS, et al. Density functional study on ferromagnetism in nitrogen-doped anatase TiO2. Applied Physics Letters. 2009; 95(6). doi: 10.1063/1.3204463

[6] Bao NN, Fan HM, Ding J, et al. Room temperature ferromagnetism in N-doped rutile TiO2 films. Journal of Applied Physics. 2011; 109(7). doi: 10.1063/1.3535427

[7] Mikami M, Ozaki K. Thermoelectric properties of nitrogen-doped TiO2-x compounds. Journal of Physics: Conference Series. 2012; 379: 012006. doi: 10.1088/1742-6596/379/1/012006

[8] Liu G, Li F, Wang DW, et al. Electron field emission of a nitrogen-doped TiO2 nanotube array. Nanotechnology. 2007; 19(2): 025606. doi: 10.1088/0957-4484/19/02/025606

[9] Yu YP, Liu W, Wu SX, et al. Impact of Nitrogen Doping on Electrical Conduction in Anatase TiO2 Thin Films. The Journal of Physical Chemistry C. 2012; 116(37): 19625-19629. doi: 10.1021/jp300024n

[10] Yen Y, Ou S, Lin K. One‐Pot Synthesis of Nitrogen‐doped TiO2 Nanowires with Enhanced Photocurrent Generation. Journal of the Chinese Chemical Society. 2017; 64(12): 1392-1398. doi: 10.1002/jccs.201700226

[11] Kim Y, Jang JH, Park SJ, et al. Local probing of electrochemically induced negative differential resistance in TiO2 memristive materials. Nanotechnology. 2013; 24(8): 085702. doi: 10.1088/0957-4484/24/8/085702

[12] Wang X, Wang Y, Feng M, et al. Light-induced negative differential resistance effect in a resistive switching memory device. Current Applied Physics. 2020; 20(3): 371-378. doi: 10.1016/j.cap.2019.12.008

[13] Zhao X, Chen X, Ding X, et al. Humidity Sensing Properties and Negative Differential Resistance Effects of TiO2 Nanowires. IEEE Sensors Journal. 2021; 21(17): 18477-18482. doi: 10.1109/jsen.2021.3091536

[14] Lu W, Wong LM, Wang S, et al. Effects of oxygen and moisture on the I-V characteristics of TiO2 thin films. Journal of Materiomics. 2018; 4(3): 228-237. doi: 10.1016/j.jmat.2018.01.005

[15] Liu S, Liu B, Wang T, et al. High anisotropic magnetoresistance, perfect spin-filtering effect, and negative differential resistance effect of Cr-doped anatase phase TiO2. Physica Scripta. 2022; 98(1): 015827. doi: 10.1088/1402-4896/acaa74

[16] Kamaladasa RJ, Sharma AA, Lai YT, et al. In Situ TEM Imaging of Defect Dynamics under Electrical Bias in Resistive Switching Rutile-TiO2. Microscopy and Microanalysis. 2014; 21(1): 140-153. doi: 10.1017/s1431927614013555

[17] Chen X, Lou YB., Samia ACS, et al. Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder. Advanced Functional Materials. 2005; 15(1): 41-49. doi: 10.1002/adfm.200400184

[18] Mahalingam S, Edirisinghe MJ. Novel preparation of nitrogen-doped titanium dioxide films. Journal of Physics D: Applied Physics. 2008; 41(21): 215406. doi: 10.1088/0022-3727/41/21/215406

[19] Chopra KL. Avalanche-Induced Negative Resistance in Thin Oxide Films. Journal of Applied Physics. 1965; 36(1): 184-187. doi: 10.1063/1.1713870

[20] Sharma S, Chen Y, Santiago SRMS, et al. Light‐Enhanced Negative Differential Resistance and Multi‐Level Resistive Switching in Glutamine‐Functionalized MoS2 Quantum Dots for Resistive Random‐Access Memory Devices. Advanced Materials Interfaces. 2022; 10(2). doi: 10.1002/admi.202201537

[21] Sheng P, Abeles B, Arie Y. Hopping Conductivity in Granular Metals. Physical Review Letters. 1973; 31(1): 44-47. doi: 10.1103/physrevlett.31.44

[22] Cooper D, Baeumer C, Bernier N, et al. Anomalous Resistance Hysteresis in Oxide ReRAM: Oxygen Evolution and Reincorporation Revealed by In Situ TEM. Advanced Materials. 2017; 29(23). doi: 10.1002/adma.201700212

[23] Stevanovic A, Büttner M, Zhang Z, et al. Photoluminescence of TiO2: Effect of UV Light and Adsorbed Molecules on Surface Band Structure. Journal of the American Chemical Society. 2011; 134(1): 324-332. doi: 10.1021/ja2072737

Published
2024-09-10
How to Cite
Liu, C.-M. (2024). The negative differential resistance of nitrogen implanted TiO2. Materials Technology Reports, 2(1), 1556. https://doi.org/10.59400/mtr.v2i1.1556
Section
Article