Enhancing handwritten numeric string recognition through incremental support vector machines

  • Rani Kurnia Putri Department of Mathematics Education, Universitas PGRI Adi Buana Surabaya, Jawa Timur 60234, Indonesia
  • Muhammad Athoillah Department of Statistics, Universitas PGRI Adi Buana Surabaya, Jawa Timur 60234, Indonesia http://orcid.org/0000-0002-1800-1314
Ariticle ID: 373
163 Views, 172 PDF Downloads
Keywords: digital image processing; incremental learning; pattern recognition; dynamic machine learning

Abstract

Handwritten digit recognition systems are integral to diverse applications such as postal services, banking, and document processing in our digitally-driven society. This research addresses the challenges posed by evolving datasets and dynamic scenarios in handwritten digit recognition by proposing an approach based on incremental support vector machines (ISVM). ISVM is an extension of traditional support vector machines (SVM) designed to handle scenarios where new data points become available over time. The dataset includes handwritten images (numbers “0” to “6”) and trials introducing new classes (“7”, “8”, and “9”). Evaluation utilizes k-fold cross-validation for robustness. Digital image processing involves converting images into numeric data using the histogram method. The result showed the positive outcomes of using ISVM in handwritten digit recognition, emphasizing its adaptability to incremental learning and its ability to maintain robust performance in the face of evolving datasets, which is crucial for real-world applications.

References

[1] Athoillah M, Putri RK. Handwritten Arabic Numeral Character Recognition Using Multi Kernel Support Vector Machine. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. 2019; 4(2): 99-106. doi: 10.22219/kinetik.v4i2.724

[2] Memon J, Sami M, Khan RA, et al. Handwritten Optical Character Recognition (OCR): A Comprehensive Systematic Literature Review (SLR). IEEE Access. 2020, 8: 142642-142668. doi: 10.1109/access.2020.3012542

[3] Diaz M, Ferrer MA, Impedovo D, et al. A Perspective Analysis of Handwritten Signature Technology. ACM Computing Surveys. 2019, 51(6): 1-39. doi: 10.1145/3274658

[4] Athoillah M. K-Nearest Neighbor for Recognize Handwritten Arabic Character. Jurnal Matematika “MANTIK.” 2019, 5(2): 83-89. doi: 10.15642/mantik.2019.5.2.83-89

[5] Yogesh Y, Ghantasala GSP, Priya A. Artificial Intelligence Based Handwriting Digit Recognition (HDR) - A Technical Review. In: Proceedings of the 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT); 17–18 March 2023; Dehradun, India. pp. 275–278. doi: 10.1109/dicct56244.2023.10110186

[6] Khobragade RN, Koli NA, Lanjewar VT. Challenges in recognition of online and off-line compound handwritten characters: A review. In: Zhang YD, Mandal J, So-In C, Thakur N (editors). Smart Trends in Computing and Communications. Springer; 2020. Volume 165. pp. 375–383. doi: 10.1007/978-981-15-0077-0_38

[7] Liu X, Lian Y. Handwriting identification: Challenges and solutions. Journal of Forensic Science and Medicine. 2018; 4(3): 167-173. doi: 10.4103/jfsm.jfsm_81_17

[8] Yang Q, Gu Y, Wu D. Survey of incremental learning. In: Proceedings of the 2019 Chinese Control And Decision Conference (CCDC); 3–5 June 2019; Nanchang, China. pp. 399–404. doi: 10.1109/ccdc.2019.8832774

[9] Nayak J, Naik B, Behera HS. A Comprehensive Survey on Support Vector Machine in Data Mining Tasks: Applications & Challenges. International Journal of Database Theory and Application. 2015, 8(1): 169-186. doi: 10.14257/ijdta.2015.8.1.18

[10] Cervantes J, Garcia-Lamont F, Rodríguez-Mazahua L, et al. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing. 2020, 408: 189-215. doi: 10.1016/j.neucom.2019.10.118

[11] Shams M, Amira A, Wael Z. Arabic Handwritten Character Recognition based on Convolution Neural Networks and Support Vector Machine. International Journal of Advanced Computer Science and Applications. 2020, 11(8). doi: 10.14569/ijacsa.2020.0110819

[12] Rajnoha M, Burget R, Dutta MK. Offline handwritten text recognition using support vector machines. In: Proceedings of the 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN); 2–3 February 2017; Noida, India. pp. 132–136. doi: 10.1109/spin.2017.8049930

[13] Katiyar G. Off-Line Handwritten Character Recognition System Using Support Vector Machine. American Journal of Neural Networks and Applications. 2017, 3(2): 22. doi: 10.11648/j.ajnna.20170302.12

[14] Athoillah M, Imah EM, Irawan MI. Multi kernel-based classification method with incremental learning for image retrieval. In: Proceedings of the International Conference on Mathematics: Pure, Applied and Computation, ICoMPAC 2015; 3 December 2015; Surabaya, Indonesia.

[15] Athoillah M. Face Recognition Using Multi Kernel SVM with Incremental Learning (Malaysian). Jurnal Online Informatika. 2018, 2(2): 84. doi: 10.15575/join.v2i2.109

[16] Peryanto A, Yudhana A, Umar R. Image Classification Using Convolutional Neural Network and K Fold Cross Validation (Indonesian). Journal of Applied Informatics and Computing. 2020, 4(1): 45-51. doi: 10.30871/jaic.v4i1.2017

[17] Xu Y, Goodacre R. On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. Journal of Analysis and Testing. 2018, 2(3): 249-262. doi: 10.1007/s41664-018-0068-2

[18] Zhang Y, Yang Y. Cross-validation for selecting a model selection procedure. Journal of Econometrics. 2015, 187(1): 95-112. doi: 10.1016/j.jeconom.2015.02.006

[19] Braga-Neto U. Fundamentals of Pattern Recognition and Machine Learning. Springer International Publishing, 2020. doi: 10.1007/978-3-030-27656-0

[20] Ye Q, Doermann D. Text Detection and Recognition in Imagery: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2015, 37(7): 1480-1500. doi: 10.1109/tpami.2014.2366765

[21] Ajam A, Forghani M, AlyanNezhadi MM, et al. Content-based image retrieval using color difference histogram in image textures. In: Proceedings of the 2019 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS); 18–19 December 2019; Shahrood, Iran. pp. 1–6. doi: 10.1109/icspis48872.2019.9066062

[22] Somvanshi M, Chavan P, Tambade S, et al. A review of machine learning techniques using decision tree and support vector machine. In: Proceedings of the 2016 International Conference on Computing Communication Control and automation (ICCUBEA); 12–13 August 2016; Pune, India. pp. 1–7. doi: 10.1109/iccubea.2016.7860040

[23] Chefrour A. Incremental supervised learning: algorithms and applications in pattern recognition. Evolutionary Intelligence. 2019, 12(2): 97-112. doi: 10.1007/s12065-019-00203-y

[24] Pisner DA, Schnyer DM. Support vector machine. Machine Learning: Methods and Applications to Brain Disorders. Academic Press; 2020. pp. 101–121. doi: 10.1016/b978-0-12-815739-8.00006-7

[25] Campbell C, Ying Y. Learning with Support Vector Machines. Springer Nature; 2022.

[26] Zhang YC, Hu GS, Zhu FF, et al. A new incremental learning support vector machine. In: Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence; 7–8 November 2009; NW Washington, DC, United States. doi: 10.1109/aici.2009.342

[27] Juba B, Le HS. Precision-Recall versus Accuracy and the Role of Large Data Sets. Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33(01): 4039-4048. doi: 10.1609/aaai.v33i01.33014039

Published
2024-01-19
How to Cite
Putri, R. K., & Athoillah, M. (2024). Enhancing handwritten numeric string recognition through incremental support vector machines. Journal of AppliedMath, 2(1), 373. https://doi.org/10.59400/jam.v2i1.373
Section
Article