Hybrid control and MRD in a steel frame building subjected to excessive vibrations caused by the dynamic action of wind and earthquake

  • Michael Dowglas de Gois Silva Department of Mechanical Engineering, Faculty of Engineering of Ilha Solteira, UNESP-Paulista State University, Ilha Solteira, São Paulo 15385-000, Brasil
  • Fábio Roberto Chavarette Department of Engineering, Physics and Mathematics, Institute of Chemistry, UNESP-Paulista State Univerity, Araraquara, São Paulo 14800-060, Brasil
Keywords: shear building; earthquake; wind; H control; MRD; hybrid controller

Abstract

The dynamic loads from earthquakes and winds can destroy lives, cause collapse in civil structures, and interrupt basic services provided to the population. In this scenario, structural designs must be developed to decrease the damage induced by these actions. The objective of this work is to design a hybrid controller based on the H¥ optimization via state feedback and the magneto-rheological damper (MRD) to mitigate the excessive vibrations of a three-story steel frame building, represented through the shear building model, subjected to the simultaneous dynamic action of wind and earthquake. All research is based on computational simulation, experimental research and results will not be addressed. In the numerical analysis, digital computer and MATLAB® software are used, and implemented codes generate the expected results based on the mathematical modeling. With the application of the H¥ control technique via state feedback, the displacements were reduced by 77%. With MRD this reduction was 79%. With the hybrid controller, this reduction was 100%. Thus, the verifications in relation to maximum displacements were met for NBR 15421:2006, NBR 8800:2008 and NBR 6118:2014. From the results, it is concluded that the hybrid controller proved to be more efficient and achieved the proposed objective. The exogenous inputs had zero influence on the behavior of the system output.

Author Biography

Michael Dowglas de Gois Silva, Department of Mechanical Engineering, Faculty of Engineering of Ilha Solteira, UNESP-Paulista State University, Ilha Solteira, São Paulo 15385-000, Brasil
Department of Mechanical Engineering, Faculty of Engineering of Ilha Solteira

References

Tominaga LK, Santoro J, Amaral R. Natural disasters: knowing to prevent (Portuguese), 1st ed. São Paulo: Ed. Instituto Geológico; 2009.

Bosse RM. Performance of TMDs in buildings subjected to earthquakes (Portuguese) [Master’s thesis]. Programa de Pós-Graduação em Engenharia Civil, Escola de Engenharia da Universidade de São Paulo. São Carlos; 2017.

Illescas MAG, Icaza, LA. Model reduction of shear building models: A quantitative approach for master degrees of freedom selection. Engineering Structures. 2019; 179: 512-522. doi: 10.1016/j.engstruct.2018.11.019

Ribeiro M. Numerical and computational analysis of a wind-induced structural vibration control system (Portuguese) [PhD thesis]. Programa de Pós-Graduação em Modelagem Computacional, Universidade Federal de Juiz de Fora. Juiz de Fora; 2018.

Pandit AR, Biswal KC. Seismic control of multi degree of freedom structure outfitted with sloped bottom tuned liquid damper. Structures. 2020; 25: 229-240. doi: 10.1016/j.istruc.2020.03.009

Lima RS, Chavarette FR. Nonlinear Dynamics, Chaos and Control of the Hindmarsh-Rose Neuron Model. Boletim da Sociedade Paranaense de Matemática. 2022; 40: 1-9. doi: 10.5269/bspm.47770

Roefero LGP, Chavarette FR, Mishra LN. Linear Quadratic Regulator Applied to a Magnetorheological Damper Aiming Attenuate Vibration in an Automotive Suspension. Twms Journal of Applied and Engineering Mathematics. 2022; 12: 1189-1201.

Vicente J, Chavarette F, Roefero L. Chaos Control via Mathieu-Van der Pol System and Linear Optimal Control Design with a Non-ideal Excitation and Parametric Uncertainties. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería. 2019; 35. doi: 10.23967/j.rimni.2019.08.001

Bandyopadhyay S, Parulekar YM, Sengupta A, et al. Structure soil structure interaction of conventional and base-isolated building subjected to real earthquake. Structures. 2021; 32: 474-493. doi: 10.1016/j.istruc.2021.03.069

Brasil, R. M. R. F.; Silva, M. A. Introdução à dinâmica das estruturas. 2 ed. Rio de Janeiro, Editora Blucher. 2015.

Paz M, Kim YH. Structural dynamics: theory and computation, 6th ed. Editora Springer; 2019.

Savi MA. Non-linear dynamics and chaos (Portuguese), 2rd ed. Rio de Janeiro, Brasil, Editora e-papers; 2017.

Chopra AK. Dynamics of structures: theory and applications to earthquake engineering. Prentice Hall, New Jersey. 1995.

Corbani S. Dynamic elasto-plastic analysis of steel structures subjected to random earthquake excitation (Portuguese) [Master’s thesis]. Departamento de Engenharia de Estruturas e Fundações, Escola Politécnica da Universidade de São Paulo. São Paulo. 2006.

Associação Brasileira de Normas Técnicas. ABNT. NBR 6123. Forces due to wind in buildings (Portuguese). Rio de Janeiro: ABNT.; 1988.

Carril CFJ. Numerical and experimental analysis of the dynamic effect of wind on metal lattice towers for telecommunications (Portuguese) [PhD thesis]. Departamento de Engenharia de Estruturas e Fundações, Escola Politécnica da Universidade de São Paulo. São Paulo. 2000.

Franco M. Direct along wind dynamic analysis of tall structures. Boletim Técnico, São Paulo; 1993.

Associação Brasileira de Normas Técnicas. ABNT. NBR 15421. Design of earthquake-resistant structures—Procedure (Portuguese). Rio de Janeiro: ABNT.; 2006.

Brandão FS. Optimization of synchronized dynamic attenuators for vibration control in buildings subjected to seismic excitation (Portuguese) [Master’s thesis]. Programa de Pós-Graduação em Engenharia Civil, Escola de Engenharia da Universidade Federal do Rio Grande do Sul. Porto Alegre. 2021.

Kanai K. Semi-empirical formula for seismic characterisation of the ground. Bull. Earthquake Res. Inst. Uni. Tokyo. 1957; 35.

MATLAB 2022 version. Mathworks Company.

Ogata K. Modern control engineering (Portuguese), 5th ed. São Paulo, Editora Pearson Prentice Hall; 2010.

Ferreira DC, Chavarette FR, Peruzzi NJ. Linear matrix inequalities control driven for non-ideal power source energy harvesting. Journal of Theoretical and Applied Mechanics. Published online July 23, 2015: 605. doi: 10.15632/jtam-pl.53.3.605

Trofino A, Coutinho DF, Barbosa KA. Improved H2 and H¥ conditions for robust analysis and control synthesis of linear systems. Sba: Controle & Automação Sociedade Brasileira de Automatica. 2005; 16(4): 427-434. doi: 10.1590/s0103-17592005000400004

Boyd S, Balakrishnan V, Feron E, EL Ghaoui L. Linear matrix Inequalities in systems and control theory. Philadelphia: Studies in Applied Mathematics. 1994

Palma PHT. Experimental identification and active control of vibrations applied to intelligent structures (Portuguese) [Master’s thesis]. Departamento de Engenharia Mecânica, Universidade Estadual Paulista “Júlio de Mesquita Filho”. Ilha Solteira; 2007.

Peres PLD. H2 control and H: characterization by linear matrix inequalities (Portuguese) [PhD thesis]. Departamento de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas. Campinas; 1997.

Assunção E. Design of robust H2 controllers and H via LMI (Portuguese). In: Notas de aula da disciplina de projeto de controladores robustos H2 e H via LMI do curso de pós-graduação de engenharia elétrica da UNESP—Ilha Solteira. 2019.

Spencer JRBF, Dyke SJ, Sain MK, Carlson JD. Phenomenological model for magnetorheological dampers. Journal of engineering mechanics. 1997; 123(3): 230-238. doi: 10.1061/(ASCE)0733-9399(1997)123:3(230)

Tusset AM, Balthazar JM. On the Chaotic Suppression of Both Ideal and Non-ideal Duffing Based Vibrating Systems, Using a Magnetorheological Damper. Differential Equations and Dynamical Systems. 2012; 21(1-2): 105-121. doi: 10.1007/s12591-012-0128-4

Wolf A, Swift JB, Swinney HL, Vastan JA. Determining Lyapunov exponents from a Time Series. Physica D. 1985; 16: 285-317. doi: 10.1016/0167-2789(85)90011-9

Mohammadi S. Lyaprosen: MATLAB function to calculate Lyapunov exponente. University of Tehran. 2009.

Rosenstein MT, Collins JJ, Deluca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D. 1993; 65(1-2): 117-134. doi: 10.1016/0167-2789(93)90009-P

Associação Brasileira de Normas Técnicas. ABNT. NBR 8800. Design of steel structures and mixed steel and concrete building structures (Portuguese). Rio de Janeiro: ABNT.; 2008.

Associação Brasileira de Normas Técnicas. ABNT. NBR 6118. Design of concrete structures-Procedure (Portuguese). Rio de Janeiro: ABNT.; 2014.

Published
2024-04-02
How to Cite
de Gois Silva, M. D., & Chavarette, F. R. (2024). Hybrid control and MRD in a steel frame building subjected to excessive vibrations caused by the dynamic action of wind and earthquake. Journal of AppliedMath, 2(2), 451. https://doi.org/10.59400/jam.v2i2.451
Section
Article