On the geometry of an almost α-cosymplectic (k, µ, ν)-spaces

  • Pakize Uygun Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100 Aksaray, Turkey
  • Mehmet Atçeken Department of Mathematics, Faculty of Arts and Sciences, Aksaray University, 68100 Aksaray, Turkey
  • Tugba Mert Department of Mathematics, Faculty of Sciences, Sivas Cumhuriyet University, 58140 Sivas, Turkey
Article ID: 206
Keywords: α-cosymplectic (k,µ,ν)-spaces; W6-curvaturetensor; W9-curvature tensor

Abstract

The object of the paper is to investigate almost α-cosymplectic (k,µ,ν)-spaces. Some results on almost cosymplectic (k,µ,ν)-spaces with certain conditions are obtained.

References

[1]Dacko P, Olszak Z. On almost cosymplectic (k, µ, ν)−spaces. Banach Center Publications 2005; 69(1): 211–220.

[2]Dacko P, Olszak Z. On almost cosymplectic (−1, µ, σ)−spaces. Central European Journal of Math. CEJM 2005; 3(2): 318–330.

[3]Boeckx E. Afull classification of contact metric (k, µ)−spaces. Illinois J. Math. 2000; 44(1): 212–219.

[4]Goldberg SI, Yano K. Integrability of almost cosymplectic strustures. Pcific J. Math. 1969; 31: 373–382.

[5]Ozturk H, Aktan N, Murathan C. Almost α−cosymplectic (k, µ, ν)−spaces. arXiv 2010; 1077: 0527 v1.

[6]Atçeken M. Characterizations for an invariant submanifold of an almost α−cosymplectic (k, µ, ν)−space to be totally geodesic. Filomat 2022; 36(9): 2871–2879.

[7]Carriazo A, Martin-Molina V. Almost cosymplectic and almost Kenmotsu (k, µ, ν)−space, Mediterr. J. Math. 2013; 10: 1551–1571.

[8]Kim TW,Pak HK. Canonical foliations of certain classses of almost contact metric structures. Acta Mathematica Sinica. English Series 2005; 21(4): 841–856.

[9]Yolda HI. Some results on α−cosymplectic manifolds. Bull. Transil. Univ. Brasov Sene III. Math. Comput. Sci. 2021; (1): 15–128.

[10]Yolda HI. Some results on cosymplectic manifolds admitting certain vector fields. J. Geom. Symmetry Phys. 2021; 60: 83–94.

[11]Yolda HI. On some classes of generalized recurrent α-cosymplectic manifolds. Turk. J. Math. Computer Sci. 2022; 14(1), 74–81.

[12]Aktan N, Balkan S, Yildirim M. On weakly symmetries of almost Kenmotsu (k, µ, ν)−spaces. Hacettepe J. Math. Stat. 2013; 42(4): 447–453.

[13]Koufogiorgos T, Markellos M, Papantoniou VJ. The harmonicity of the Reeb vector fields on contact 3-manifolds. Pasific J. Math. 2008; 234(2): 325–344.

[14]Pokhariyal GP. Relativistic significance of curvature tensors. Internat. J. Math. Sci. 1982; 5(1): 133–139.

[15]Blair DE, Koufogiorgos T, Papantoniou BJ. Contact metric manifolds satisfying a nullity condition. Israel J. Math. 1995; 91: 189–214.

[16]Küpeli Erken I. On a classıfıcation of almost α−cosymplectic manifolds. Khayyam Journal of Math. 2019; 5(1):1–10.

[17]Olszak Z. On almost cosymplectic manifolds. Kodai Math. J. 1981; 4: 239–250.

[18]Yano K, Bochner S. Curvature and Betti numbers, Annals of Mathematics Studies 32. Princeton University Press; 1953.

Published
2024-09-09
How to Cite
Uygun, P., Atçeken, M., & Mert, T. (2024). On the geometry of an almost α-cosymplectic (k, µ, ν)-spaces. Journal of AppliedMath, 2(4), 206. https://doi.org/10.59400/jam.v2i4.206
Section
Commentary