Onthe geometry of an almost α-cosymplectic (k, µ, ν)-spaces
Abstract
The object of the paper is to investigate almost α-cosymplectic (k,µ,ν)-spaces. Some results on almost cosymplectic (k,µ,ν)-spaces with certain conditions are obtained.
References
[1] Dacko P, Olszak Z. On almost cosymplectic (k, µ, ν)−spaces. Banach Center Publications 2005; 69(1): 211–220.
[2] Dacko P, Olszak Z. On almost cosymplectic (−1, µ, σ)−spaces. Central European Journal of Math. CEJM 2005; 3(2): 318–330.
[3] Boeckx E. Afull classification of contact metric (k, µ)−spaces. Illinois J. Math. 2000; 44(1): 212–219.
[4] Goldberg SI, Yano K. Integrability of almost cosymplectic strustures. Pcific J. Math. 1969; 31: 373–382.
[5] Ozturk H, Aktan N, Murathan C. Almost α−cosymplectic (k, µ, ν)−spaces. arXiv 2010; 1077: 0527 v1.
[6] Atçeken M. Characterizations for an invariant submanifold of an almost α−cosymplectic (k, µ, ν)−space to be totally geodesic. Filomat 2022; 36(9): 2871–2879.
[7] Carriazo A, Martin-Molina V. Almost cosymplectic and almost Kenmotsu (k, µ, ν)−space, Mediterr. J. Math. 2013; 10: 1551–1571.
[8] Kim TW,Pak HK. Canonical foliations of certain classses of almost contact metric structures. Acta Mathematica Sinica. English Series 2005; 21(4): 841–856.
[9] Yolda HI. Some results on α−cosymplectic manifolds. Bull. Transil. Univ. Brasov Sene III. Math. Comput. Sci. 2021; (1): 15–128.
[10] Yolda HI. Some results on cosymplectic manifolds admitting certain vector fields. J. Geom. Symmetry Phys. 2021; 60: 83–94.
[11] Yolda HI. On some classes of generalized recurrent α-cosymplectic manifolds. Turk. J. Math. Computer Sci. 2022; 14(1), 74–81.
[12] Aktan N, Balkan S, Yildirim M. On weakly symmetries of almost Kenmotsu (k, µ, ν)−spaces. Hacettepe J. Math. Stat. 2013; 42(4): 447–453.
[13] Koufogiorgos T, Markellos M, Papantoniou VJ. The harmonicity of the Reeb vector fields on contact 3-manifolds. Pasific J. Math. 2008; 234(2): 325–344.
[14] Pokhariyal GP. Relativistic significance of curvature tensors. Internat. J. Math. Sci. 1982; 5(1): 133–139.
[15] Blair DE, Koufogiorgos T, Papantoniou BJ. Contact metric manifolds satisfying a nullity condition. Israel J. Math. 1995; 91: 189–214.
[16] Küpeli Erken I. On a classıfıcation of almost α−cosymplectic manifolds. Khayyam Journal of Math. 2019; 5(1):1–10.
[17] Olszak Z. On almost cosymplectic manifolds. Kodai Math. J. 1981; 4: 239–250.
[18] Yano K, Bochner S. Curvature and Betti numbers, Annals of Mathematics Studies 32. Princeton University Press; 1953.
Copyright (c) 2024 Pakize Uygun, Mehmet Atçeken, Tugba Mert
This work is licensed under a Creative Commons Attribution 4.0 International License.