On the relation between perfect powers and tetration frozen digits
Abstract
This paper provides a link between integer exponentiation and integer tetration since it is devoted to introducing some peculiar sets of perfect powers characterized by any given value of their constant congruence speed, revealing a fascinating relation between the degree of every perfect power belonging to any congruence class modulo 20 and the number of digits frozen by these special tetration bases, in radix-10, for any unit increment of the hyperexponent. In particular, given any positive integer c, we constructively prove the existence of infinitely many c-th perfect powers having a constant congruence speed of c.
References
[1]Googology Wiki, Tetration. Available online: https:// googology.wikia.org/wiki/Tetration (accessed on 31 October 2024).
[2]Ripà M. The congruence speed formula. Notes Number Theory Discrete Math. 2021; 27(4): 43–61. doi:10.7546/nntdm.2021.27.4.43-61.
[3]Ripà M, Onnis L. Number of stable digits of any integer tetration, Notes Number Theory Discrete Math. 2022; 28(3): 441–457. doi:10.7546/nntdm.2022.28.3.441-457.
[4]The On-Line Encyclopedia of Integer Sequences (OEIS). Available online: https://oeis.org/ (accessed on 31 October 2024).
[5]Automorphic Number [From MathWorld A Wolfram Web Resource by Weisstein EW]. Available online: https://mathworld.wolfram.com/AutomorphicNumber.html (accessed on 31 October 2024).
[6]deGuerre V, Fairbairn RA. Automorphic numbers. J. Rec. Math. 1968; 1(3): 173–179.
[7]Lewis RY. A formal proof of Hensel’s lemma over the p-adic integers. In: Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs (CPP 2019); 14–15 January 2019; Cascais, Portugal.
[8]Germain J. On the Equation a^x≡x (mod b). Integers. 2009; 9(6): 629–638. doi:10.1515/INTEG.2009.050.
[9]Urroz JJ, Yebra JLA. On the Equation a^x≡x (mod b^n ). J. Integer Seq. 2009; 12(8): Article 09.8.8.
[10]Quick L. p-adic Absolute Values [2020 Summer Program for Undergraduates]. REU 2020-The University of Chicago Mathematics; 2020.
[11]Parvardi AH. Lifting The Exponent Lemma (LTE)-Version 6. Available online: http://s3.amazonaws.com/aops-cdn.artofproblemsolving.com/resources/articles/lifting-the-exponent.pdf (accessed on 15 May 2024).
[12]Heuberger C, Mazzoli M. Elliptic curves with isomorphic groups of points over finite field extensions. J. Number Theory. 2017; 181: 89–98. doi: 10.1016/j.jnt.2017.05.028.
[13]Cassels JWS. Local Fields. London Mathematical Society Student Texts 3. Cambridge University Press; 1986.
Copyright (c) 2024 Marco Ripà
This work is licensed under a Creative Commons Attribution 4.0 International License.