Modeling penetration depth in submerged arc welding using artificial neural networks: A comprehensive approach

  • Farhad Rahmati Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran; Department of Mechanical Engineering, Razi University, Kermanshah 6714967346, Iran
  • Ali Shafipour Department of Mechanical Engineering, Razi University, Kermanshah 6714967346, Iran
  • Masood Aghakhani Department of Mechanical Engineering, Razi University, Kermanshah 6714967346, Iran
  • Farhad Kolahan Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad 9177948944, Iran
Article ID: 2511
Keywords: nanoparticles; penetration depth; weld geometry; submerged arc welding; artificial neural networks

Abstract

Penetration depth, defined as the distance from the surface of the base material to the deepest point of the molten zone, is a critical factor influencing the strength and mechanical properties of welds. This study investigates the effects of process parameters in submerged arc welding (SAW) on penetration depth, utilizing a two-hidden-layer artificial neural network (ANN) for modeling. The input parameters include arc voltage, welding current, electrode stick-out, welding speed, and the thickness of a manganese-enriched nanoparticle layer, with penetration depth as the output variable. The results demonstrate that increasing the welding current to 700 amps enhances heat transfer to the molten pool, thereby improving base material melting and penetration depth. Similarly, raising the arc voltage from 24 to 32 volts results in a moderate increase in penetration depth due to higher heat input while maintaining a relatively stable electrode melting rate. These findings highlight the potential of optimizing SAW parameters to achieve consistent weld quality and desirable mechanical properties.

References

[1]Zhang YM, Yang YP, Zhang W, et al. Advanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions. Journal of Manufacturing Science and Engineering. 2020; 142(11). doi: 10.1115/1.4047947

[2]Rahmati F, Aghakhani M, Kolahan F. Influence of Siliconized Zn-Graphene Oxide Complex Nanoparticles on the Microstructure and Mechanical Properties of AA5083: Focus on Gas Metal Arc Welding. Advances in Materials Science and Engineering. 2023; 2023: 1-14. doi: 10.1155/2023/3892612

[3]Dwivedi DK. Dissimilar Metal Joining. Springer Nature Singapore; 2023. doi: 10.1007/978-981-99-1897-3

[4]Rahmati F, Kolahan F, Aghakhani M. Prediction of weld bead geometry of AA5083 using taguchi technique: in the presence of siliconized zn-graphene oxide complex nanoparticles. The International Journal of Advanced Manufacturing Technology. 2024; 136(1): 3-14. doi: 10.1007/s00170-024-13074-0

[5]Dwivedi DK. Fundamentals of Metal Joining. Springer Singapore; 2022. doi: 10.1007/978-981-16-4819-9

[6]Rathi AK. To study the effect of submerged arc welding parameters on bead geometry and hardness for mild steel (IS-2062A) using fractional factorial design. Materials Today: Proceedings. 2021; 34: 525-530. doi: 10.1016/j.matpr.2020.03.106

[7]Patel HN, Chauhan VD, George PM. Effect of process parameters on submerged arc welding: A review. In: Proceedings of the 14th asia-pacific physics conference; 2021. doi: 10.1063/5.0036234

[8]Jindal S, Singh M, Chauhan J. Effect and Optimization of Welding Parameters and Flux Baking on Weld Bead Properties and Tensile Strength in Submerged Arc Welding of HSLA 100 Steel. Transactions of the Indian Institute of Metals. 2023; 77(3): 747-766. doi: 10.1007/s12666-023-03158-y

[9]Barbosa LHS, Modenesi PJ, Godefroid LB, et al. Fatigue crack growth rates on the weld metal of high heat input submerged arc welding. International Journal of Fatigue. 2019; 119: 43-51. doi: 10.1016/j.ijfatigue.2018.09.020

[10]Rajkumar T, Prabakaran MP, Arunkumar G, et al. Evaluation of mechanical and metallurgical properties of submerged arc welded plate joint. Materials Today: Proceedings. 2021; 37: 1367-1371. doi: 10.1016/j.matpr.2020.06.563

[11]Choudhary A, Kumar M, Unune DR. Experimental investigation and optimization of weld bead characteristics during submerged arc welding of AISI 1023 steel. Defence Technology. 2019; 15(1): 72-82. doi: 10.1016/j.dt.2018.08.004

[12]Kumar R, Dikshit I, Verma A. Experimental investigations and statistical modelling of dilution rate and area of penetration in submerged arc welding of SS316-L. Materials Today: Proceedings. 2021; 44: 3997-4003. doi: 10.1016/j.matpr.2020.10.201

[13]Garg J, Garg SB, Jeet B, et al. The effects of flux particle size and column height on the bead geometry in submerged arc welding. Sādhanā. 2022; 47(4). doi: 10.1007/s12046-022-01971-7

[14]Mezaache M, Benaouda OF, Kellai A. Maximizing welding efficiency: applying an improved whale optimization algorithm for parametric optimization of bead width in a submerged arc welding process. The International Journal of Advanced Manufacturing Technology. 2024; 134(5-6): 2737-2752. doi: 10.1007/s00170-024-14231-1

[15]Shafipour A, Rahmati F, Aghakhani M, et al. Optimization of penetration depth in submerged arc welding using genetic algorithm. The International Journal of Advanced Manufacturing Technology. 2024; 136(1): 123-132. doi: 10.1007/s00170-024-13976-z

[16]Sharma H, Rajput B, Singh RP. A review paper on effect of input welding process parameters on structure and properties of weld in submerged arc welding process. Materials Today: Proceedings. 2020; 26: 1931-1935. doi: 10.1016/j.matpr.2020.02.422

[17]Sailender M, Reddy GCM, Venkatesh S. Parametric Design for Purged Submerged Arc Welding on Strength of Low Carbon Steel. European Journal of Engineering and Technology Research. 2018; 1(3): 1-6. doi: 10.24018/ejeng.2016.1.3.132

[18]Ankush C, Kumar M, Unune DR. Parametric modeling and optimization of novel water-cooled advanced submerged arc welding process. The International Journal of Advanced Manufacturing Technology. 2018; 97(1-4): 927-938. doi: 10.1007/s00170-018-1944-7

[19]Vedrtnam A, Singh G, Kumar A. Optimizing submerged arc welding using response surface methodology, regression analysis, and genetic algorithm. Defence Technology. 2018; 14(3): 204-212. doi: 10.1016/j.dt.2018.01.008

[20]da Silva MM, Batista VR, Maciel TM, et al. Optimization of submerged arc welding process parameters for overlay welding. Welding International. 2017; 32(2): 122-129. doi: 10.1080/09507116.2017.1347325

[21]Choudhary S, Shandley R, Kumar A. Optimization of agglomerated fluxes in submerged arc welding. Materials Today: Proceedings. 2018; 5(2): 5049-5057. doi: 10.1016/j.matpr.2017.12.083

[22]Aleshin NP, Grigor’ev MV, Kobernik NV, et al. Modification of Weld Metal with Tungsten Carbide and Titanium Nitride Nanoparticles in Twin Submerged Arc Welding. High Energy Chemistry. 2018; 52(5): 440-445. doi: 10.1134/s0018143918050028

[23]Naderian P, Aghakhani M, Khoshboo S. Modelling the hardness of weld metal in the submerged arc welding of low carbon steel plates: addition of CR2O3 nanoparticles. Advances in Materials and Processing Technologies. 2022; 9(1): 221-236. doi: 10.1080/2374068x.2022.2091186

[24]Vatanpour V, Madaeni SS, Rajabi L, et al. Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. Journal of Membrane Science. 2012; 401-402: 132-143. doi: 10.1016/j.memsci.2012.01.040

[25]Jabbari A, Tahmasbi B, Nikoorazm M, et al. A new Pd‐Schiff‐base complex on boehmite nanoparticles: Its application in Suzuki reaction and synthesis of tetrazoles. Applied Organometallic Chemistry. 2018; 32(6). doi: 10.1002/aoc.4295

[26]Ghorbani‐Choghamarani A, Seydyosefi Z, Tahmasbi B. Zirconium oxide complex anchored on boehmite nanoparticles as highly reusable organometallic catalyst for C–S and C–O coupling reactions. Applied Organometallic Chemistry. 2018; 32(8). doi: 10.1002/aoc.4396

[27]Rajabi L, Derakhshan AA. Room Temperature Synthesis of Boehmite and Crystallization of Nanoparticles: Effect of Concentration and Ultrasound. Science of Advanced Materials. 2010; 2(2): 163-172. doi: 10.1166/sam.2010.1063

[28]Ghorbani-Choghamarani A, Seydyosefi Z, Tahmasbi B. Tribromide ion supported on boehmite nanoparticles as a reusable catalyst for organic reactions. Comptes Rendus Chimie. 2018; 21(11): 1011-1022. doi: 10.1016/j.crci.2018.09.001

[29]Chen W, Yang T, Dong L, et al. Advances in graphene reinforced metal matrix nanocomposites: Mechanisms, processing, modelling, properties and applications. Nanotechnology and Precision Engineering. 2020; 3(4): 189-210. doi: 10.1016/j.npe.2020.12.003

[30]Schrimpf M, Kubilius J, Hong H, et al. Brain-Score: Which Artificial Neural Network for Object Recognition is most Brain-Like?. BioRxiv; 2018. doi: 10.1101/407007

[31]Anitescu C, Atroshchenko E, Alajlan N, et al. Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems. Computers, Materials & Continua. 2019; 59(1): 345-359. doi: 10.32604/cmc.2019.06641

[32]Zhao D, Wang Y, Liang D, et al. Performances of regression model and artificial neural network in monitoring welding quality based on power signal. Journal of Materials Research and Technology. 2020; 9(2): 1231-1240. doi: 10.1016/j.jmrt.2019.11.050

[33]Sekban DM, Yaylacı EU, Özdemir ME, et al. Investigating Formability Behavior of Friction Stir-Welded High-Strength Shipbuilding Steel using Experimental, Finite Element, and Artificial Neural Network Methods. Journal of Materials Engineering and Performance. 2024. doi: 10.1007/s11665-024-09501-8

[34]Karadeniz E, Ozsarac U, Yildiz C. The effect of process parameters on penetration in gas metal arc welding processes. Materials & Design. 2007; 28(2): 649-656. doi: 10.1016/j.matdes.2005.07.014

[35]Karaoğlu S, Seçgin A. Sensitivity analysis of submerged arc welding process parameters. Journal of Materials Processing Technology. 2008; 202(1-3): 500-507. doi: 10.1016/j.jmatprotec.2007.10.035

Published
2025-02-27
How to Cite
Rahmati, F., Shafipour, A., Aghakhani, M., & Kolahan, F. (2025). Modeling penetration depth in submerged arc welding using artificial neural networks: A comprehensive approach. Mechanical Engineering Advances, 3(1), 2511. https://doi.org/10.59400/mea2511
Section
Article