Ocean current turbine power take-off design using fluid dynamics and towing tank experiments
Abstract
This study investigates the performance and power generation capabilities of a small-scale hydrokinetic turbine by comparing numerical simulations with experimental measurements. The key difference between the two models comes from the initial numerical analysis which focused only on the permanent magnet DC motor (PMDC) motor’s parameters and did not account for the gear-head reduction that leads to discrepancies in current and torque predictions, especially at lower input voltages. In practice, friction losses within the gear-head increased the required current and torque, highlighting inefficiencies in the motor gear-head system. A modified experimental setup incorporated a magnetic coupling to address leakage issues and enhance system reliability. While the magnetic coupling resulted in a slight reduction in speed, current, and torque, it improved the overall integrity of the system which is essential for marine applications. The comparison between experimental results and Blade Element Momentum (BEM) simulations showed good agreement at lower speeds, but the simulations under-predicted power at higher speeds, likely due to the model’s limitations in capturing complex hydrodynamic phenomena. This shows the need for comprehensive analysis, integrating both numerical and experimental approaches to optimize turbine performance. Future research will focus on refining experimental methodologies and further improving turbine design and efficiency for hydrokinetic energy systems.
References
[1]Boehlert G, Gill A. Environmental and Ecological Effects of Ocean Renewable Energy Development—A Current Synthesis. Oceanography. 2010; 23(2): 68–81. doi: 10.5670/oceanog.2010.46
[2]Majdi Nasab N, Kilby J, Bakhtiaryfard L. The Potential for Integration of Wind and Tidal Power in New Zealand. Sustainability. 2020; 12(5): 1807. doi: 10.3390/su12051807
[3]Stevens CL, Smith MJ, Grant B, et al. Tidal energy resource complexity in a large strait: The Karori Rip, Cook Strait. Continental Shelf Research. 2012; 33: 100–109. doi: 10.1016/j.csr.2011.11.012
[4]Lewis M, Neill SP, Robins PE, et al. Resource assessment for future generations of tidal-stream energy arrays. Energy. 2015; 83: 403–415. doi: 10.1016/j.energy.2015.02.038
[5]Fox CJ, Benjamins S, Masden EA, et al. Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates. Renewable and Sustainable Energy Reviews. 2018; 81: 1926–1938. doi: 10.1016/j.rser.2017.06.004
[6]Brooks DA. The tidal-stream energy resource in Passamaquoddy–Cobscook Bays: A fresh look at an old story. Renewable Energy. 2006; 31(14): 2284–2295. doi: 10.1016/j.renene.2005.10.013
[7]El-Shahat SA, Li G, Lai F, et al. Investigation of parameters affecting horizontal axis tidal current turbines modeling by blade element momentum theory. Ocean Engineering. 2020; 202: 107176. doi: 10.1016/j.oceaneng.2020.107176
[8]Rahimian M, Walker J, Penesis I. Performance of a horizontal axis marine current turbine– A comprehensive evaluation using experimental, numerical, and theoretical approaches. Energy. 2018; 148: 965–976. doi: 10.1016/j.energy.2018.02.007
[9]Dehouck V, Lateb M, Sacheau J, et al. Application of the Blade Element Momentum Theory to Design Horizontal Axis Wind Turbine Blades. Journal of Solar Energy Engineering. 2018; 140(1). doi: 10.1115/1.4038046
[10]Bahaj AS, Batten WMJ, McCann G. Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines. Renewable Energy. 2007; 32(15): 2479–2490. doi: 10.1016/j.renene.2007.10.001
[11]Nachtane M, Tarfaoui M, Goda I, et al. A review on the technologies, design considerations and numerical models of tidal current turbines. Renewable Energy. 2020; 157: 1274–1288. doi: 10.1016/j.renene.2020.04.155
[12]Ng KW, Lam WH, Ng KC. 2002–2012: 10 Years of Research Progress in Horizontal-Axis Marine Current Turbines. Energies. 2013; 6(3): 1497–1526. doi: 10.3390/en6031497
[13]Vogel CR, Willden RHJ, Houlsby GT. Blade element momentum theory for a tidal turbine. Ocean Engineering. 2018; 169: 215–226. doi: 10.1016/j.oceaneng.2018.09.018
[14]Wekesa DW, Wang C, Wei Y, et al. Experimental and numerical study of turbulence effect on aerodynamic performance of a small-scale vertical axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics. 2016; 157: 1–14. doi: 10.1016/j.jweia.2016.07.018
[15]Bottasso CL, Campagnolo F, Petrović V. Wind tunnel testing of scaled wind turbine models: Beyond aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics. 2014; 127: 11–28. doi: 10.1016/j.jweia.2014.01.009
[16]Devinant P, Laverne T, Hureau J. Experimental study of wind-turbine airfoil aerody-namics in high turbulence. Journal of Wind Engineering and Industrial Aerodynamics. 2020; 90(6): 689–707.
[17]Bayati I, Belloli M, Bernini L, et al. Aerodynamic design methodology for wind tunnel tests of wind turbine rotors. Journal of Wind Engineering and Industrial Aerodynamics. 2017; 167: 217–227. doi: 10.1016/j.jweia.2017.05.004
[18]Hansen M. Aerodynamics of Wind Turbines. Routledge; 2015
[19]Wilson RE, Lissaman PBS. Applied Aerodynamics of Wind Power Machines. Renewable Energy. 2018: 71–120. doi: 10.4324/9781315793245-89
[20]Burton T, Jenkins N, Sharpe D, et al. Wind energy handbook. John Wiley & Sons; 2011.
[21]Manwell JF, McGowan JG, Rogers AL. Wind energy explained: theory, design and application. John Wiley & Sons; 2010.
[22]Letcher TM. Wind energy engineering: a handbook for onshore and offshore wind turbines. Elsevier; 2023. pp. 3–10.
[23]Molland AF, Turnock SR, Hudson DA. Ship resistance and propulsion. Cambridge university press; 2017.
[24]Paraschivoiu I. Wind turbine design: with emphasis on Darrieus concept. Presses inter Polytechnique; 2002.
[25]Pacheco A, Ferreira Ó. Hydrodynamic changes imposed by tidal energy converters on extracting energy on a real case scenario. Applied Energy. 2016; 180: 369–385. doi: 10.1016/j.apenergy.2016.07.132
[26]Atcheson M, MacKinnon P, Elsaesser B. A large scale model experimental study of a tidal turbine in uniform steady flow. Ocean Engineering. 2015; 110: 51–61. doi: 10.1016/j.oceaneng.2015.09.052
[27]Malki R, Williams AJ, Croft TN, et al. A coupled blade element momentum—Computational fluid dynamics model for evaluating tidal stream turbine performance. Applied Mathematical Modelling. 2013; 37(5): 3006–3020. doi: 10.1016/j.apm.2012.07.025
[28]Mannion B, Leen SB, Nash S. Development and assessment of a blade element momentum theory model for high solidity vertical axis tidal turbines. Ocean Engineering. 2020; 197: 106918. doi: 10.1016/j.oceaneng.2020.106918
[29]Faudot C, Dahlhaug OG. Prediction of Wave Loads on Tidal Turbine Blades. Energy Procedia. 2012; 20: 116–133. doi: 10.1016/j.egypro.2012.03.014
[30]Zhu FW, Ding L, Huang B, et al. Blade design and optimization of a horizontal axis tidal turbine. Ocean Engineering. 2020; 195: 106652. doi: 10.1016/j.oceaneng.2019.106652
[31]Wang L, Liu X, Renevier N, et al. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory. Energy. 2014; 76: 487–501. doi: 10.1016/j.energy.2014.08.046
[32]Sun Z, Chen J, Shen WZ, et al. Improved blade element momentum theory for wind turbine aerodynamic computations. Renewable Energy. 2016; 96: 824–831. doi: 10.1016/j.renene.2016.05.035
[33]Batten WMJ, Harrison ME, Bahaj AS. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2013; 371(1985): 20120293. doi: 10.1098/rsta.2012.0293
[34]Guillou SS, Thie´bot J, Santa Cruz A, et al. Modelling turbulence with an actuator disk representing a tidal turbine. Renewable Energy. 2016; 97: 625–635. doi: 10.1016/j.renene.2016.06.014
[35]Du L, Ingram G, Dominy RG. A review of H-Darrieus wind turbine aerodynamic research. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2019; 233(23–24): 7590–7616. doi: 10.1177/0954406219885962
[36]Sadeqi S, Xiros N, Aktosun E, et al. Power Estimation of an Experimental Ocean Current Turbine Based on the Conformal Mapping and Blade Element Momentum Theory. American Society of Mechanical Engineers. 2021; 7B. doi: 10.1115/imece2021-71751
[37]Rouhi S, Xiros N, Aktosun E, et al. A Small-Scale Experimental Ocean Current Turbine Apparatus for Power Measurement. American Society of Mechanical Engineers. 2021; 7B. doi: 10.1115/imece2021-71754
[38]Rouhi S, Sadeqi S, Xiros N, et al. Applying Artificial Intelligence to Optimize Small-Scale Ocean Current Turbine Performance. Volume 5: Dynamics, Vibration, and Control. American Society of Mechanical Engineers. 2022; 7B. doi: 10.1115/imece2022-95804
[39]Sadeqi S, Rouhi S, Xiros N, et al. Numerical Investigation of an Experimental Ocean Current Turbine Based on Blade Element Momentum Theory (BEM). American Society of Mechanical Engineers. 2021; 9. doi: 10.1115/omae2021-63010
[40]Flickinger KN. Facility development for testing small scale horizontal axis wind turbines. PennState University Libraries; 2013.
[41]Burdett TA. Aerodynamic design considerations for small-scale, fixed-pitch, horizontal-axis wind turbines operating in class 2 winds [PhD thesis]. Baylor University; 2012.
[42]Musial W, McNiff B. Wind turbine testing in the nrel dynamometer test bed. National Renewable Energy Lab. (NREL), Golden, CO (United States); 2000.
[43]Mohanty B, Wang F, A. Stelson K. Design of a Power Regenerative Hydrostatic Wind Turbine Test Platform. JFPS International Journal of Fluid Power System. 2019; 11(3): 130–135. doi: 10.5739/jfpsij.11.130
[44]Mohanty B, Stelson KA. Dynamics and Control of an Energy-Efficient, Power-Regenerative, Hydrostatic Wind Turbine Dynamometer. Energies. 2022; 15(8): 2868. doi: 10.3390/en15082868
[45]Corbus D, Baring-Gould I, Drouilhet S, et al. Small wind turbine testing and applications development. National Renewable Energy Lab. (NREL), Golden, CO (United States); 1999.
[46]Bahaj AS, Molland AF, Chaplin JR, et al. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy. 2007; 32(3): 407–426. doi: 10.1016/j.renene.2006.01.012
[47]Duhaney J, Khoshgoftaar TM, Sloan JC, et al. A Dynamometer for an Ocean Turbine Prototype: Reliability through Automated Monitoring. In: Proceedings of the 2011 IEEE 13th International Symposium on High-Assurance Systems Engineering; 2011. pp. 244–251.
[48]Eriksson S, Bernhoff H, Leijon M. Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews. 2008; 12(5): 1419–1434. doi: 10.1016/j.rser.2006.05.017
[49]Hsiao FB, Bai CJ, Chong WT. The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods. Energies. 2013; 6(6): 2784–2803. doi: 10.3390/en6062784
[50]Viterna LA, Janetzke DC. Theoretical and Experimental Power from Large Horizontal-Axis Wind Turbines. Office of Scientific and Technical Information (OSTI); 1982.
[51]Bai CJ, Wang WC. Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs). Renewable and Sustainable Energy Reviews. 2016; 63: 506–519. doi: 10.1016/j.rser.2016.05.078
[52]Kishinami K, Taniguchi H, Suzuki J, et al. Theoretical and experimental study on the aerodynamic characteristics of a horizontal axis wind turbine. Energy. 2005; 30(11–12): 2089–2100. doi: 10.1016/j.energy.2004.08.015
[53]Pope K, Dincer I, Naterer GF. Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines. Renewable Energy. 2010; 35(9): 2102–2113. doi: 10.1016/j.renene.2010.02.013
[54]Lee MH, Shiah YC, Bai CJ. Experiments and numerical simulations of the rotor-blade performance for a small-scale horizontal axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics. 2016; 149: 17–29. doi: 10.1016/j.jweia.2015.12.002
[55]Rouhi S, Xiros NI, Sadeqi S, et al. Dynamometer Testing of Hydrokinetic Turbines in a Towing Tank Facility. American Society of Mechanical Engineers. 2023; 6: V006T07A097. doi: 10.1115/imece2023-112837
[56]Hasankhani A, VanZwieten J, Tang Y, et al. Modeling and Numerical Simulation of a Buoyancy Controlled Ocean Current Turbine. International Marine Energy Journal. 2021; 4(2): 47–58. doi: 10.36688/imej.4.47-58
[57]Jackson RS, Amano R. Experimental Study and Simulation of a Small-Scale Horizontal-Axis Wind Turbine. Journal of Energy Resources Technology. 2017; 139(5). doi: 10.1115/1.4036051
[58]Encarnacion JI, Johnstone C, Ordonez-Sanchez S. Design of a Horizontal Axis Tidal Turbine for Less Energetic Current Velocity Profiles. Journal of Marine Science and Engineering. 2019; 7(7): 197. doi: 10.3390/jmse7070197
[59]Lotfy K, Mahdy AMS, El-Bary AA, et al. Magneto-Photo-Thermoelastic Excitation Rotating Semiconductor Medium Based on Moisture Diffusivity. Computer Modeling in Engineering & Sciences. 2024; 141(1): 107–126. doi: 10.32604/cmes.2024.053199
[60]Rouhi S, Sadeqi S, Xiros NI, et al. Development of Mathematical Model for Coupled Dynamics of Small-Scale Ocean Current Turbine and Generator to Optimize Hydrokinetic Energy Harvesting Applications. Applied Sciences. 2024; 14(16): 7164. doi: 10.3390/app14167164
Copyright (c) 2024 Setare Sadeqi, Shahab Rouhi, Nikolaos I. Xiros, Erdem Aktosun, Lothar Birk, Juliette Ioup, Miguel Trejos
This work is licensed under a Creative Commons Attribution 4.0 International License.