Prelithiation of electrodes in lithium-ion capacitors: A review

  • Aston Sam D’Silva Department of Electronics & Communication Engineering, Mangalore Institute of Technology & Engineering, Badaga Mijar, Mangaluru 574225, India
  • M. P. Eldho Department of Electronics & Communication Engineering, Mangalore Institute of Technology & Engineering, Badaga Mijar, Mangaluru 574225, India
  • K. Lekha Department of Electronics & Communication Engineering, Mangalore Institute of Technology & Engineering, Badaga Mijar, Mangaluru 574225, India
  • J. Anushree Department of Electronics & Communication Engineering, Mangalore Institute of Technology & Engineering, Badaga Mijar, Mangaluru 574225, India
  • Vinayambika S. Bhat Department of Electronics & Communication Engineering, Mangalore Institute of Technology & Engineering, Badaga Mijar, Mangaluru 574225, India
  • Raghavendra Sagar Department of Physics, Mangalore Institute of Technology & Engineering, Badaga Mijar Moodabidri, Mangaluru 574225, India
Ariticle ID: 1223
44 Views, 20 PDF Downloads
Keywords: electrodes; columbic efficiency; prelithiation; LIC; energy density

Abstract

Lithium-ion capacitors (LICs) are one among the modern state-of-the-art hybrid capacitors comprising of high potential window and impart higher energy density than supercapacitors (SCs). These LICs encompass elevated power density and longer life span than lithium-ion batteries (LIBs). Preparation of high-performance electrode materials with electrochemically active microstructure and prelithiation are two efficient approaches to fabricate highly efficient LICs. But it comes across as a real dilemma of low initial Columbic efficiency if only microstructure is considered as an efficient way to enhance the performance. Nevertheless, prelithiation plays a crucial role in the manufacturing of LICs, improving the initial Coulombic efficiency and enlarging the voltage window. This paper reviews the recent lithiation approaches for Lithium-ion capacitors by providing their methods and discussing their results concerning their energy and power density.

References

[1] Li F, Wang G, Zheng D, et al. Controlled prelithiation of SnO2/C nanocomposite anodes for building full lithium-ion batteries. ACS Applied Materials & Interfaces. 2020; 12(17): 19423-19430. doi: 10.1021/acsami.0c00729

[2] Mao Z, Song Y, Zhen AG, et al. Recycling of electrolyte from spent lithium-ion batteries. Next Sustainability. 2024; 3: 100015. doi: 10.1016/j.nxsust.2023.100015

[3] Wang G, Li F, Liu D, et al. Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries. ACS Applied Materials & Interfaces. 2019; 11(9): 8699-8703. doi: 10.1021/acsami.8b19416

[4] Esen E, Mohrhardt M, Lennartz P, et al. Effect of prelithiation with passivated lithium metal powder on passivation films on high-energy NMC-811 and SiCx electrodes. Materials Today Chemistry. 2023; 30: 101587. doi: 10.1016/j.mtchem.2023.101587

[5] Sun C, Zhang X, Li C, et al. Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors. Energy Storage Materials. 2020; 32: 497-516. doi: 10.1016/j.ensm.2020.07.009

[6] Cementon C, Ramireddy T, Dewar D, et al. We may be underestimating the power capabilities of lithium-ion capacitors. Journal of Power Sources. 2024; 591: 233857. doi: 10.1016/j.jpowsour.2023.233857

[7] Jin L, Shen C, Shellikeri A, et al. Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy & Environmental Science. 2020; 13(8): 2341-2362. doi: 10.1039/d0ee00807a

[8] Sun C, Zhang X, Li C, et al. High-efficiency sacrificial prelithiation of lithium-ion capacitors with superior energy-storage performance. Energy Storage Materials. 2020; 24: 160-166. doi: 10.1016/j.ensm.2019.08.023

[9] Xu J, Gao B, Huo KF, et al. Recent progress in electrode materials for nonaqueous lithium-ion capacitors. Journal of Nanoscience and Nanotechnology. 2020; 20(5): 2652-2667. doi: 10.1166/jnn.2020.17475

[10] Meng Q, Li G, Yue J, et al. High-performance lithiated SiOx anode obtained by a controllable and efficient prelithiation strategy. ACS Applied Materials & Interfaces. 2019; 11(35): 32062-32068. doi: 10.1021/acsami.9b12086

[11] Zou Y, Zhang Z, Chen P, et al. Improving the cycle performance of porous schiff-base polymer electrode materials in lithium-ion batteries by prelithiation. ACS Applied Energy Materials. 2023; 6(21): 11322-11330. doi: 10.1021/acsaem.3c02197

[12] Chen M, Huang X, Yang C, et al. Simultaneous prelithiation and compatible modification toward ultrafast and ultrastable lithium-ion capacitors. ACS Applied Energy Materials. 2022; 5(8): 9684-9691. doi: 10.1021/acsaem.2c01339

[13] Jang J, Ki H, Kang Y, et al. Chemically prelithiated graphene for anodes of li-ion batteries. Energy & Fuels. 2020; 34(10): 13048-13055. doi: 10.1021/acs.energyfuels.0c01854

[14] Shen Y, Zhang J, Pu Y, et al. Effective chemical prelithiation strategy for building a silicon/sulfur li-ion battery. ACS Energy Letters. 2019; 4(7): 1717-1724. doi: 10.1021/acsenergylett.9b00889

[15] Yan MY, Li G, Zhang J, et al. Enabling SiOx/C anode with high initial coulombic efficiency through a chemical pre-lithiation strategy for high-energy-density lithium-ion batteries. ACS Applied Materials & Interfaces. 2020; 12(24): 27202-27209. doi: 10.1021/acsami.0c05153

[16] He X, Mu X, Wang Y, et al. Fast and scalable complete chemical prelithiation strategy for si/c anodes enabling high-performance LixSi–S full cells. ACS Applied Energy Materials. 2023; 6(12): 6790-6796. doi: 10.1021/acsaem.3c00980

[17] Yang Y, Wang J, Kim SC, et al. In Situ prelithiation by direct integration of lithium mesh into battery cells. Nano Letters. 2023; 23(11): 5042-5047. doi: 10.1021/acs.nanolett.3c00859

[18] Choi J, Jeong H, Jang J, et al. Weakly solvating solution enables chemical prelithiation of Graphite–SiOx anodes for high-energy li-ion batteries. Journal of the American Chemical Society. 2021; 143(24): 9169-9176. doi: 10.1021/jacs.1c03648

[19] Wang Y, Lu J, Qiao Y, et al. The efficient solid electrochemical corrosion prelithiation of graphite and SiOx/C anodes for longer-lasting lithium ion batteries. Journal of Power Sources. 2023; 580: 233402. doi: 10.1016/j.jpowsour.2023.233402

[20] Johnson R, Baji DS, Nair S, et al. Spent-graphite anode from failed batteries: Regeneration and chemical prelithiation for sustainable fresh Li-ion batteries. Journal of Industrial and Engineering Chemistry. 2024; 133: 473-481. doi: 10.1016/j.jiec.2023.12.024

[21] Wang H, Wu W, Jia Q, et al. Scalable layer-by-layer stacking of the Silicon-Graphite composite: Prelithiation strategy of the high-capacity anode for energy/power-dense li batteries. Industrial & Engineering Chemistry Research. 2022; 61(22): 7442-7450. doi: 10.1021/acs.iecr.1c04702

[22] Ying K C, Ping H H, C, W. Lan. Scalable chemical prelithiation of SiO/C anode material for lithium-ion batteries. Journal of Power Sources. 2023; 558: 232599. doi: 10.1016/j.jpowsour.2022.232599

[23] Wang F, Wang B, Li J, et al. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano. 2021; 15(2): 2197-2218. doi: 10.1021/acsnano.0c10664

[24] Jia T, Zhong G, Lv Y, et al. Prelithiation strategies for silicon-based anode in high energy density lithium-ion battery. Green Energy & Environment. 2023; 8(5): 1325-1340. doi: 10.1016/j.gee.2022.08.005

[25] Berhaut CL, Dominguez DZ, Tomasi D, et al. Prelithiation of silicon/graphite composite anodes: Benefits and mechanisms for long-lasting Li-Ion batteries. Energy Storage Materials. 2020; 29: 190-197. doi: 10.1016/j.ensm.2020.04.008

[26] Shi J, Su CC, Amine R, et al. Prelithiation of lithium peroxide for silicon anode: achieving a high activation rate. ACS Applied Materials & Interfaces. 2023; 15(22): 26710-26717. doi: 10.1021/acsami.3c03312

[27] Huang B, Huang T, Wan L, et al. Pre-lithiating SiO anodes for lithium-ion batteries by a simple, effective, and controllable strategy using stabilized lithium metal powder. ACS Sustainable Chemistry & Engineering. 2021; 9(2): 648-657. doi: 10.1021/acssuschemeng.0c05851

[28] Lai P, Liu C, Sun Z, et al. A highly effective and controllable chemical prelithiation of Silicon/Carbon/Graphite composite anodes for lithium-ion batteries. Solid State Ionics. 2023; 403: 116415. doi: 10.1016/j.ssi.2023.116415

[29] Zhang X, Qu H, Ji W, et al. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2020; 12(10): 11589-11599. doi: 10.1021/acsami.9b21417

[30] Huang YE, Huang PW, Zhong Y, et al. Achieving high initial coulombic efficiencies and cycle stability of free-standing anodes by chemical prelithiation of carbon matrix. Applied Surface Science. 2023; 612: 155691. doi: 10.1016/j.apsusc.2022.155691

[31] Yue H, Zhang S, Feng T, et al. Understanding of the Mechanism Enables Controllable Chemical Prelithiation of Anode Materials for Lithium-Ion Batteries. ACS Applied Materials & Interfaces. 2021; 13(45): 53996-54004. doi: 10.1021/acsami.1c16842

[32] Divya ML, Aravindan V. Electrochemically generated γ‐LixV2O5 as insertion host for high‐energy Li‐ion capacitors. Chemistry – An Asian Journal. 2019; 14(24): 4665-4672. doi: 10.1002/asia.201900946.

[33] Zhang X, Hou X, Hou Y, et al. Insights into chemical prelithiation of SiOx/Graphite composite anodes through scanning electron microscope imaging. ACS Applied Energy Materials. 2023; 6(15): 7996-8005. doi: 10.1021/acsaem.3c01077

[34] Sun C, Zhang X, An Y, et al. Molecularly chemical prelithiation of soft carbon towards high-performance lithium-ion capacitors. Journal of Energy Storage. 2022; 56: 106009. doi: 10.1016/j.est.2022.106009

[35] Arnaiz M, Canal-Rodríguez M, Martin-Fuentes S, et al. Roll-to-roll double side electrode processing for the development of pre-lithiated 80 F lithium-ion capacitor prototypes. Journal of Physics: Energy. 2023; 6(1): 015001. doi: 10.1088/2515-7655/ad064e

[36] Veluri PS, Katchala N, Anandan S, et al. Petroleum coke as an efficient single carbon source for high-energy and high-power lithium-ion capacitors. Energy & Fuels. 2021; 35(10): 9010-9016. doi: 10.1021/acs.energyfuels.1c00665

[37] Kong L, Xu X, Hou L, et al. Phosphorus and nitrogen co-doped carbon nanoparticles as both anode and cathode materials with enhanced Li+/PF6– storage for high energy density lithium-ion capacitors. ACS Sustainable Chemistry & Engineering. 2023; 11(34): 12583-12594. doi: 10.1021/acssuschemeng.3c02068

[38] Han L, Kang S, Zhu X, et al. High-performance lithium-ion capacitors produced by atom-thick carbon cathode and nitrogen-doped porous carbon anode. Energy & Fuels. 2021; 35(20): 16894-16902. doi: 10.1021/acs.energyfuels.1c02509

[39] Tan JY, Su JT, Wu YJ, et al. Hollow porous α-Fe2O3 nanoparticles as anode materials for high-performance lithium-ion capacitors. ACS Sustainable Chemistry & Engineering. 2021; 9(3): 1180-1192. doi: 10.1021/acssuschemeng.0c06650

[40] Ahn S, Fukushima M, Nara H, et al. Effect of fluoroethylene carbonate and vinylene carbonate additives on full-cell optimization of Li-ion capacitors. Electrochemistry Communications. 2021; 122: 106905. doi: 10.1016/j.elecom.2020.106905

[41] Yang Z, Guo H, Yan G, et al. High-value utilization of lignin to prepare functional carbons toward advanced lithium-ion capacitors. ACS Sustainable Chemistry & Engineering. 2020; 8(31): 11522-11531. doi: 10.1021/acssuschemeng.0c01949

[42] Fan Z, Ding B, Li Z, et al. In-situ prelithiation of electrolyte-free silicon anode for sulfide all-solid-state batteries. eTransportation. 2023; 18: 100277. doi: 10.1016/j.etran.2023.100277

[43] Wang YK, Yang SY, Yang Y, et al. In-situ synthesized cathode prelithiation additive to compensate initial capacity loss for lithium ion batteries. Journal of Electroanalytical Chemistry. 2022; 919: 116567. doi: 10.1016/j.jelechem.2022.116567

[44] Sander M, Magar SD, Etter M, et al. The “In situ electrolyte” as a sustainable alternative for the realization of high‐power devices. Chem. Sus. Chem. 2024; 17(5). doi: 10.1002/cssc.202301746

[45] Ren Y, Li J, Guo J. Perforated active carbon and pre-lithiated graphite electrodes for high performance hybrid lithium-ion capacitors. International Journal of Electrochemical Science. 2020; 15(3): 2659-2666. doi: 10.20964/2020.03.03

[46] Arnaiz M, Shanmukaraj D, Carriazo D, et al. A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies. Energy & Environmental Science. 2020; 13(8): 2441-2449. doi: 10.1039/d0ee00351d

[47] Anothumakkool B, Wiemers‐Meyer S, Guyomard D, et al. Cascade‐type prelithiation approach for Li‐ion capacitors. Advanced Energy Materials. 2019; 9(27). doi: 10.1002/aenm.201900078

[48] Park E, Chung DJ, Park MS, et al. Pre-lithiated carbon-coated Si/SiO nanospheres as a negative electrode material for advanced lithium ion capacitors. Journal of Power Sources. 2019; 440: 227094. doi: 10.1016/j.jpowsour.2019.227094

[49] Sugiawati VA, Vacandio F, Yitzhack N, et al. Direct pre-lithiation of electropolymerized carbon nanotubes for enhanced cycling performance of flexible Li-ion micro-batteries. Polymers. 2020; 12(2): 406. doi: 10.3390/polym12020406

[50] Ding R, Tian S, Zhang K, et al. Recent advances in cathode prelithiation additives and their use in lithium–ion batteries. Journal of Electroanalytical Chemistry. 2021; 893: 115325. doi: 10.1016/j.jelechem.2021.115325

[51] Wu Y, Zhang W, Li S, et al. Li2Cu0.1Ni0.9O2 with Copper Substitution: A new cathode prelithiation additive for lithium-ion batteries. ACS Sustainable Chemistry & Engineering. 2023; 11(3): 1044-1053. doi: 10.1021/acssuschemeng.2c05779

[52] Pan Y, Qi X, Du H, et al. Li2Se as a cathode prelithiation additive for lithium-ion batteries. ACS Applied Materials & Interfaces. 2023; 15(15): 18763-18770. doi: 10.1021/acsami.2c21312

[53] Watanabe T, Tsuda T, Ando N, et al. An improved pre-lithiation of graphite anodes using through-holed cathode and anode electrodes in a laminated lithiumion battery. Electrochimica Acta. 2019; 324: 134848. doi: 10.1016/j.electacta.2019.134848

[54] Huo X, Gong X, Liu Y, et al. Conformal 3D Li/Li13Sn5 scaffolds anodes for high‐areal energy density flexible lithium metal batteries. Advanced Science. 2024; 11(14). doi: 10.1002/advs.202309254

[55] Shen C, Ye D, Jin L, et al. A simple and scalable prelithiation approach for high energy and low cost lithium ion sulfur batteries. J Electrochem Soc. 2020; 167(6): 060517.doi: 10.1149/1945- 7111/ab8408

[56] Betz J, Nowak L, Winter M, et al. An approach for pre-lithiation of Li1+xNi0.5Mn1.5O4 cathodes mitigating active lithium loss. Journal of The Electrochemical Society. 2019; 166(15): A3531-A3538. doi: 10.1149/2.1221914jes

[57] Zhu H, Li J, Wu D, et al. A novel pre-lithiation strategy achieved by the capacitive adsorption in the cathode for lithium-ion capacitors. Renewable Energy. 2023; 217: 119163. doi: 10.1016/j.renene.2023.119163

[58] Su K, Wang Y, Yang B, et al. A Review: Pre‐lithiation strategies based on cathode sacrificial lithium salts for lithium‐ion capacitors. Energy & environmental materials. 2023; 6(6). doi: 10.1002/eem2.12506

Published
2024-03-27
How to Cite
D’Silva, A. S., Eldho, M. P., Lekha, K., Anushree, J., Bhat, V. S., & Sagar, R. (2024). Prelithiation of electrodes in lithium-ion capacitors: A review. Mechanical Engineering Advances, 2(2), 1223. https://doi.org/10.59400/mea.v2i2.1223
Section
Review