A review on Co3O4 nanostructures as the electrodes of supercapacitors
Abstract
Usage of supercapacitors in energy storage applications has now become a new trend due to their auspicious features. The introduction of pseudocapacitance has increased its weightage to be used in a greater number of practical applications. Electrodes are the major constituents of a supercapacitor, based on which the electrochemical performance of the supercapacitor is decided. Among the varieties of electrode materials available, transition metal oxides are the most suitable ones to fulfill the required criteria. Due to the occurrence of faradic redox reactions on the surface of electrodes, the selection of efficient and favorable electrode material plays a major role. Co3O4 (cobalt (III) oxide) is one of the most desirable electrode materials due to its various peculiar features. This paper reviews briefly several factors of Co3O4 as electrode material in supercapacitor applications. It includes comparative discussions towards different synthesize methodologies and the influence of its dimensional morphology on the electrochemical outputs like specific capacitance, energy density, and power density.
References
[1] Zhang Q, Liu L, Zhang J, et al. Experimental investigation of starting-up, energy-saving, and emission-reducing performances of hybrid supercapacitor energy storage systems for automobiles. Journal of Energy Storage. 2023; 60: 106602. doi: 10.1016/j.est.2022.106602
[2] Liu X, Xu F, Li Z, et al. Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coordination Chemistry Reviews. 2022; 464: 214544. doi: 10.1016/j.ccr.2022.214544
[3] Kumar A, Rathore HK, Sarkar D, Shukla A. Nanoarchitectured transition metal oxides and their composites for supercapacitors. Electrochemical Science Advances. 2022; 2(6): e2100187. doi: 10.1002/elsa.202100187
[4] Babu B, Kim J, Yoo K. Nanocomposite of SnO2 quantum dots and Au nanoparticles as a battery-like supercapacitor electrode material. Materials Letters. 2022; 309: 131339. doi: 10.1016/j.matlet.2021.131339
[5] Poudel MB, Kim AA, Lohani PC, et al. Assembling zinc cobalt hydroxide/ternary sulfides heterostructure and iron oxide nanorods on three-dimensional hollow porous carbon nanofiber as high energy density hybrid supercapacitor. Journal of Energy Storage. 2023; 60: 106713. doi: 10.1016/j.est.2023.106713
[6] Al Jahdaly BA, Abu-Rayyan A, Taher MM, Shoueir K. Phytosynthesis of Co3O4 nanoparticles as the high energy storage material of an activated carbon/Co3O4 symmetric supercapacitor device with excellent cyclic stability based on a Na2SO4 aqueous electrolyte. ACS Omega. 2022; 7(27): 23673-23684. doi: 10.1021/acsomega.2c02305
[7] Al Kiey SA, Abdelhamid HN. Metal-organic frameworks (MOFs)-derived Co3O4@N-doped carbon as electrode materials for supercapacitor. Journal of Energy Storage. 2022; 55: 105449. doi: 10.1016/j.est.2022.105449
[8] Duan Z, Shi XR, Sun C, et al. Interface engineered hollow Co3O4@CoNi2S4 nanostructure for high efficiency supercapacitor and hydrogen evolution. Electrochimica Acta. 2022; 412: 140139. doi: 10.1016/j.electacta.2022.140139
[9] Zhu YR, Peng PP, Wu JZ, et al. Co3O4@NiCo2O4 microsphere as electrode materials for high-performance supercapacitors. Solid State Ionics. 2019; 336: 110-119. doi: 10.1016/j.ssi.2019.03.022
[10] Tian K, Wang JT, Xing L, et al. Nanostructure modulation of Co3O4 films by varying anion sources for pseudocapacitor applications. Solid State Ionics. 2021; 371: 115756. doi: 10.1016/j.ssi.2021.115756
[11] Nan JJ, Guo S, Alhashmialameer D, et al. Hydrothermal microwave synthesis of Co3O4/In2O3 nanostructures for photoelectrocatalytic reduction of Cr(VI). ACS Applied Nano Materials. 2022; 5(7): 8755-8766. doi: 10.1021/acsanm.2c00107
[12] Luo S, Wang R, Yin J, et al. Preparation and dye degradation performances of self-assembled MXene-Co3O4 nanocomposites synthesized via solvothermal approach. ACS Omega. 2019; 4(2): 3946-3953. doi: 10.1021/acsomega.9b00231
[13] Xiao M, Yu X, Guo Y, Ge M. Boosting toluene combustion by tuning electronic metal support interactions in in situ grown Pt@Co3O4 catalysts. Environmental Science & Technology. 2022; 56(2): 1376-1385. doi: 10.1021/acs.est.1c07016
[14] Barbieri EMS, Lima EPC, Lelis MFF, Freitas MBJG. Recycling of cobalt from spent Li-ion batteries as β-Co (OH)2 and the application of Co3O4 as a pseudocapacitor. Journal of Power Sources. 2014; 270: 158-165. doi: 10.1016/j.jpowsour.2014.07.108
[15] Xiong S, Yuan C, Zhang X, et al. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chemistry. 2009; 15(21): 5320-5326. doi: 10.1002/chem.200802671
[16] Luo F, Li J, Lei Y, et al. Three-dimensional enoki mushroom-like Co3O4 hierarchitectures constructed by one-dimension nanowires for high-performance supercapacitors. Electrochimica Acta. 2014; 135: 495-502. doi: 10.1016/j.electacta.2014.04.075
[17] Raman V, Suresh S, Savarimuthu PA, et al. Synthesis of Co3O4 nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity. Experimental and Therapeutic Medicine. 2016; 11(2): 553-560. doi: 10.3892/etm.2015.2946
[18] Delbari SA, Ghadimi LS, Hadi R, et al. Transition metal oxide-based electrode materials for flexible supercapacitors: A review. Journal of Alloys and Compounds. 2021; 857: 158281. doi: 10.1016/j.jallcom.2020.158281
[19] Korkmaz S, Kariper IA, Karaman O, Karaman C. The production of rGO/RuO2 aerogel supercapacitor and analysis of its electrochemical performances. Ceramics International. 2021; 47(24): 34514-34520. doi: 10.1016/j.ceramint.2021.08.366
[20] Roberts AJ, Slade RCT. Effect of specific surface area on capacitance in asymmetric carbon/α-MnO2 supercapacitors. Electrochimica Acta. 2010; 55(25): 7460-7469. doi: 10.1016/j.electacta.2010.01.004
[21] Zhang X, Shi W, Zhu J, et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Research. 2010; 3: 643-652. doi: 10.1007/s12274-010-0024-6
[22] Li J, Liu X. Preparation and characterization of α-MoO3 nanobelt and its application in supercapacitor. Materials Letters. 2013; 112: 39-42. doi: 10.1016/j.matlet.2013.08.094
[23] Zhang Y, Huang Y. Facile synthesis and characterization of rough surface V2O5 nanomaterials for pseudo-supercapacitor electrode material with high capacitance. Bulletin of Materials Science. 2017; 40(6): 1137-1149. doi: 10.1007/s12034-017-1470-5
[24] Manikandan K, Dhanuskodi S, Maheswari N, Muralidharan G. SnO2 nanoparticles for supercapacitor application. AIP Conference Proceedings. 2016; 1731(1): 050048. doi: 10.1063/1.4947702
[25] Prasad KR, Koga K, Miura N. Electrochemical deposition of nanostructured indium oxide: High-performance electrode material for redox supercapacitors. Chemistry of Materials. 2004; 16(10): 1845-1847. doi: 10.1021/cm0497576
[26] Ahmed AO, Samer BS, Nakate UT, et al. Electrodeposited spruce leaf-like structured copper bismuth oxide electrode for supercapacitor application. Microelectronic Engineering. 2020; 229: 111359. doi: 10.1016/j.mee.2020.111359
[27] Lorkit P, Panapoy M, Ksapabutr B. Iron oxide-based supercapacitor from ferratrane precursor via sol-gel-hydrothermal process. Energy Procedia. 2014; 56: 466-473. doi: 10.1016/j.egypro.2014.07.180
[28] Wang H, Shi Y, Li Z, et al. Synthesis and electrochemical performance of Co3O4/graphene. Chemical Research in Chinese Universities. 2014; 30(4): 650-655. doi: 10.1007/s40242-014-4109-8
[29] Pang H, Li X, Zhao Q, et al. One-pot synthesis of heterogeneous Co3O4-nanocube/Co(OH)2-nanosheet hybrids for high-performance flexible asymmetric all-solid-state supercapacitors. Nano Energy. 2017; 35: 138-145. doi: 10.1016/j.nanoen.2017.02.044
[30] Che H, Lv Y, Liu A, et al. Facile synthesis of three dimensional flower-like Co3O4@MnO2 core-shell microspheres as high-performance electrode materials for supercapacitors. Ceramics International. 2017; 43(8): 6054-6062. doi: 10.1016/j.ceramint.2017.01.148
[31] Cui L, Li J, Zhang XG. Preparation and properties of Co3O4 nanorods as supercapacitor material. Journal of Applied Electrochemistry. 2009; 39(10): 1871-1876. doi: 10.1007/s10800-009-9891-5
[32] Xie L, Li K, Sun G, et al. Preparation and electrochemical performance of the layered cobalt oxide (Co3O4) as supercapacitor electrode material. Journal of Solid State Electrochemistry. 2013; 17(1): 55-61. doi: 10.1007/s10008-012-1856-7
[33] Xiao A, Zhou S, Zuo C, et al. Controllable synthesis of mesoporous Co3O4 nanoflake array and its application for supercapacitor. Materials Research Bulletin. 2014; 60: 674-678. doi: 10.1016/j.materresbull.2014.09.034
[34] Gopalakrishnan M, Srikesh G, Mohan A, Arivazhagan V. In-situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications. Applied Surface Science. 2017; 403: 578-583. doi: 10.1016/j.apsusc.2017.01.092
[35] Michalska M, Xu H, Shan Q, et al. Solution combustion synthesis of a nanometer-scale Co3O4 anode material for Li-ion batteries. Beilstein Journal of Nanotechnology. 2021; 12(1): 424-431. doi: 10.3762/bjnano.12.34
[36] Yoshimura M, Byrappa K. Hydrothermal processing of materials: Past, present and future. Journal of Materials Science. 2008; 43(7): 2085-2103. doi: 10.1007/s10853-007-1853-x
[37] Carregosa JDC, Grilo JPF, Godoi GS, et al. Microwave-assisted hydrothermal synthesis of ceria (CeO2): Microstructure, sinterability and electrical properties. Ceramics International. 2020; 46(14): 23271-23275. doi: 10.1016/j.ceramint.2020.06.021
[38] Gan YX, Jayatissa AH, Yu Z, et al. Hydrothermal synthesis of nanomaterials. Journal of Nanomaterials. 2020; 2020: 8917013. doi: 10.1155/2020/8917013
[39] Dhanalakshmi R, Denardin JC. Magnetic field enhanced photoreduction of Cr (VI) over the p-n-p BiFeO3/CoFe2O4/Co3O4 nanocomposites. Journal of Magnetism and Magnetic Materials. 2022; 562: 169788. doi: 10.1016/j.jmmm.2022.169788
[40] Askari MB, Rozati SM, Salarizadeh P, Azizi S. Reduced graphene oxide supported Co3O4-Ni3S4 ternary nanohybrid for electrochemical energy storage. Ceramics International. 2022; 48(11): 16123-16130. doi: 10.1016/j.ceramint.2022.02.160
[41] Askari MB, Rozati SM. Construction of Co3O4-Ni3S4-rGO ternary hybrid as an efficient nanoelectrocatalyst for methanol and ethanol oxidation in alkaline media. Journal of Alloys and Compounds. 2022; 900: 163408. doi: 10.1016/j.jallcom.2021.163408
[42] Wang Y, Lei Y, Li J, et al. Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Applied Materials & Interfaces. 2014; 6(9): 6739-6747. doi: 10.1021/am500464n
[43] Hou L, Yuan C, Yang L, et al. Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors. RSC Advances. 2011; 1(8): 1521-1526. doi: 10.1039/C1RA00312G
[44] Pişkin B, Uygur CS, Aydınol MK. Morphology effect on electrochemical properties of doped (W and Mo) 622NMC, 111NMC, and 226NMC cathode materials. International Journal of Hydrogen Energy. 2020; 45(14): 7874-7880. doi: 10.1016/j.ijhydene.2019.07.249
[45] Shwetha KP, Manjunatha C, Kamath MKS, et al. Morphology-controlled synthesis and structural features of ultrafine nanoparticles of Co3O4: An active electrode material for a supercapacitor. Applied Research. 2022; 1(4): e202200031. doi: 10.1002/appl.202200031
[46] Jamil S, Janjua MRSA, Khan SR. Synthesis of self-assembled Co3O4 nanoparticles with porous sea urchin-like morphology and their catalytic and electrochemical applications. Australian Journal of Chemistry. 2017; 70(8): 908-916. doi: 10.1071/CH16694
[47] Niveditha CV, Aswini R, Fatima MJJ, et al. Feather like highly active Co3O4 electrode for supercapacitor application: A potentiodynamic approach. Materials Research Express. 2018; 5(6): 065501. doi: 10.1088/2053-1591/aac5a7
[48] Yuan C, Yang L, Hou L, et al. Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors. Journal of Materials Chemistry. 2011; 21(45): 18183-18185. doi: 10.1039/C1JM14173B
[49] Deng J, Kang L, Bai G, et al. Solution combustion synthesis of cobalt oxides (Co3O4 and Co3O4/CoO) nanoparticles as supercapacitor electrode materials. Electrochimica Acta. 2014; 132: 127-135. doi: 10.1016/j.electacta.2014.03.158
[50] Toghan A, Khairy M, Kamar EM, Mousa MA. Effect of particle size and morphological structure on the physical properties of NiFe2O4 for supercapacitor application. Journal of Materials Research and Technology. 2022; 19: 3521-3535. doi: 10.1016/j.jmrt.2022.06.095
[51] Gao Y, Chen S, Cao D, et al. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. Journal of Power Sources. 2010; 195(6): 1757-1760. doi: 10.1016/j.jpowsour.2009.09.048
[52] Yuan YF, Xia XH, Wu JB, et al. Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application. Electrochemistry Communications. 2011; 13(10): 1123-1126. doi: 10.1016/j.elecom.2011.07.012
[53] Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science. 2015; 8(3): 702-730. doi: 10.1039/C4EE03229B
[54] Zhou H, Yang H, Yao S, et al. Synthesis of 3D printing materials and their electrochemical applications. Chinese Chemical Letters. 2022; 33(8): 3681-3694. doi: 10.1016/j.cclet.2021.11.018
[55] Zheng Y, Li Z, Xu J, et al. Multi-channeled hierarchical porous carbon incorporated Co3O4 nanopillar arrays as 3D binder-free electrode for high performance supercapacitors. Nano Energy. 2016; 20: 94-107. doi: 10.1016/j.nanoen.2015.11.038
[56] Hussain I, Lee JM, Iqbal S, et al. Preserved crystal phase and morphology: electrochemical influence of copper and iron co-doped cobalt oxide and its supercapacitor applications. Electrochimica Acta. 2020; 340: 135953. doi: 10.1016/j.electacta.2020.135953
[57] Singh AK, Sarkar D, Karmakar K, et al. High-performance supercapacitor electrode based on cobalt oxide-manganese dioxide-nickel oxide ternary 1D hybrid nanotubes. ACS Applied Materials & Interfaces. 2016; 8(32): 20786-20792. doi: 10.1021/acsami.6b05933
[58] Jiang Y, Chen L, Zhang H, et al. Two-dimensional Co3O4 thin sheets assembled by 3D interconnected nanoflake array framework structures with enhanced supercapacitor performance derived from coordination complexes. Chemical Engineering Journal. 2016; 292: 1-12. doi: 10.1016/j.cej.2016.02.009
[59] Zhang M, Fan H, Zhao N, et al. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chemical Engineering Journal. 2018; 347: 291-300. doi: 10.1016/j.cej.2018.04.113
[60] Deori K, Ujjain SK, Sharma RK, Deka S. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Applied Materials & Interfaces. 2013; 5(21): 10665-10672. doi: 10.1021/am4027482
[61] Yadav S, Yadav J, Kumar M, Saini K. Synthesis and characterization of nickel oxide/cobalt oxide nanocomposite for effective degradation of methylene blue and their comparative electrochemical study as electrode material for supercapacitor application. International Journal of Hydrogen Energy. 2022; 47(99): 41684-41697. doi: 10.1016/j.ijhydene.2022.02.011
[62] Wang J, Huang Y, Du X, et al. Hollow 1D carbon tube core anchored in Co3O4@SnS2 multiple shells for constructing binder-free electrodes of flexible supercapacitors. Chemical Engineering Journal. 2023; 464: 142741. doi: 10.1016/j.cej.2023.142741
[63] Kumar YA, Das HT, Guddeti PR, et al. Self-supported Co3O4@Mo-Co3O4 needle-like nanosheet heterostructured architectures of battery-type electrodes for high-performance asymmetric supercapacitors. Nanomaterials. 2022; 12(14): 2330. doi: 10.3390/nano12142330
[64] Tang C, Yin X, Gong H. Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode. ACS Applied Materials & Interfaces. 2013; 5(21): 10574-10582. doi: 10.1021/am402436q
Copyright (c) 2024 Samatha Kelathaya, Raghavendra Sagar
This work is licensed under a Creative Commons Attribution 4.0 International License.