Hydrothermally doping valve metal Nb into Titanate nanofibers structure for potentially engineering bone tissue

  • Yang Tian Material Science/Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Institute for Nanoscience/Engineering, University of Arkansas, Fayetteville, AR 72701, USA
  • Parker Cole Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
  • Yiting Xiao Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
  • Abdussamad Akhter Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
  • Trenton Collins Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
  • Lu Zhang Cell/Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
  • Yan Huang Cell/Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA; Animal Science, University of Arkansas, Fayetteville, AR 72701, USA
  • Z. Ryan Tian Material Science/Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Institute for Nanoscience/Engineering, University of Arkansas, Fayetteville, AR 72701, USA; Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; Cell/Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA
Ariticle ID: 375
186 Views, 82 PDF Downloads
Keywords: nanosynthesis; Titanate nanofiber; bone tissue engineering; bone scaffold; niobium dopant; pro-bone elements

Abstract

Recent research efforts in bone tissue engineering have been primarily directed towards manufacture-viable synthesis of biomaterials that can significantly enhance the biocompatibilities and osteogenic capabilities on the new biomaterials. This paper presents a straightforward, cost-effective, optimized, and well-controlled hydrothermal synthesis of Nb-doped potassium titanate nanofibers in high-purity. Characterization data revealed that the Nb-doping potassium titanate maintained the crystal structure, showing great promise for applications in bone tissue engineering.

References

Zhang B, Li J, He L, et al. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomaterialia. 2020; 114: 431-448. doi: 10.1016/j.actbio.2020.07.024

Min Q, Liu J, Zhang Y, et al. Dual Network Hydrogels Incorporated with Bone Morphogenic Protein-7-Loaded Hyaluronic Acid Complex Nanoparticles for Inducing Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells. Pharmaceutics. 2020; 12(7): 613. doi: 10.3390/pharmaceutics12070613

Wu T, Li B, Wang W, et al. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomaterials Science. 2020; 8(16): 4603-4615. doi: 10.1039/d0bm00523a

Oudadesse H, Najem S, Mosbahi S, et al. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. Journal of Biomedical Materials Research Part A. 2020; 109(5): 590-599. doi: 10.1002/jbm.a.37043

Nie L, Deng Y, Li P, et al. Hydroxyethyl Chitosan-Reinforced Polyvinyl Alcohol/Biphasic Calcium Phosphate Hydrogels for Bone Regeneration. ACS Omega. 2020; 5(19): 10948-10957. doi: 10.1021/acsomega.0c00727

Photo-crosslinked alginate nano-hydroxyapatite paste for bone tissue engineering - IOPscience. Available online: https://iopscience.iop.org/article/10.1088/1748-605X/ab9551/meta (accessed on 14 November 2023).

Yang L, Gao C, Wei D, et al. Nanotechnology for treating osteoporotic vertebral fractures. International Journal of Nanomedicine. 2015; 5139. doi: 10.2147/ijn.s85037

Venkataramana C, Botsa SM, Shyamala P, et al. Photocatalytic degradation of polyethylene plastics by NiAl2O4 spinels-synthesis and characterization. Chemosphere. 2021; 265: 129021. doi: 10.1016/j.chemosphere.2020.129021

Saravanan S, Vimalraj S, Anuradha D. Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair. Biomedicine & Pharmacotherapy. 2018; 107: 908-917. doi: 10.1016/j.biopha.2018.08.072

Mohammadi M, Mousavi Shaegh SA, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. Journal of Controlled Release. 2018; 274: 35-55. doi: 10.1016/j.jconrel.2018.01.032

Aldaadaa A, Al Qaysi M, Georgiou G, et al. Physical properties and biocompatibility effects of doping SiO2 and TiO2 into phosphate-based glass for bone tissue engineering. Journal of Biomaterials Applications. 2018; 33(2): 271-280. doi: 10.1177/0885328218788832

Hashemi A, Ezati M, Mohammadnejad J, et al. Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation. International Journal of Nanomedicine. 2020; 15: 4471-4481. doi: 10.2147/ijn.s248927

Liang F, Zhou L, Wang K. Apatite Formation on Porous Titanium by Alkali and Heat-Treatment. Surface and Coatings Technology. 2003; 165(2): 133-139. doi: 10.1016/S0257-8972(02)00735-1

Marins NH, Lee BEJ, e Silva RM, et al. Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids and Surfaces B: Biointerfaces. 2019; 182: 110386. doi: 10.1016/j.colsurfb.2019.110386

Cadafalch Gazquez G, Chen H, Veldhuis SA, et al. Flexible Yttrium-Stabilized Zirconia Nanofibers Offer Bioactive Cues for Osteogenic Differentiation of Human Mesenchymal Stromal Cells. ACS Nano. 2016; 10(6): 5789-5799. doi: 10.1021/acsnano.5b08005

Hwang C, Park S, Kang IG, et al. Tantalum-coated polylactic acid fibrous membranes for guided bone regeneration. Materials Science and Engineering: C. 2020; 115: 111112. doi: 10.1016/j.msec.2020.111112

Zhang J, Huang D, Liu S, et al. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Materials Science and Engineering: C. 2019; 105: 110054. doi: 10.1016/j.msec.2019.110054

Dong W, Cogbill A, Zhang T, et al. Multifunctional, Catalytic Nanowire Membranes and the Membrane-Based 3D Devices. The Journal of Physical Chemistry B. 2006; 110(34): 16819-16822. doi: 10.1021/jp0637633

Dong W, Zhang T, Epstein J, et al. Multifunctional Nanowire Bioscaffolds on Titanium. Chemistry of Materials. 2007; 19(18): 4454-4459. doi: 10.1021/cm070845a

Cole P, Tian Y, Thornburgh S, et al. Hydrothermal synthesis of valve metal Zr-doped titanate nanofibers for bone tissue engineering. Nano and Medical Materials. 2023; 3(2): 249. doi: 10.59400/nmm.v3i2.249

Xiao Y, Tian Y, Zhan Y, Zhu J. Degradation of organic pollutants in flocculated liquid digestate using photocatalytic titanate nanofibers: Mechanism and response surface optimization. Frontiers of Agricultural Science and Engineering. 2023; 10(3), 492-502. doi: 10.15302/j-fase-2023503

Yuan ZY, Zhang XB, Su BL. Moderate hydrothermal synthesis of potassium titanate nanowires. Applied Physics A. 2004; 78(7): 1063-1066. doi: 10.1007/s00339-003-2165-x

Bi H, Zhu S, Liang Y, et al. Nb-Doped TiO2 with Outstanding Na/Mg-Ion Battery Performance. ACS Omega. 2023; 8(6): 5893-5900. doi: 10.1021/acsomega.2c07689

Balbinot G de S, Bahlis EA da C, Visioli F, et al. Polybutylene-adipate-terephthalate and niobium-containing bioactive glasses composites: Development of barrier membranes with adjusted properties for guided bone regeneration. Materials Science and Engineering: C. 2021; 125: 112115. doi: 10.1016/j.msec.2021.112115

Wang X, Liu SJ, Qi YM, et al. Behavior of potassium titanate whisker in simulated body fluid. Materials Letters. 2014; 135: 139-142. doi: 10.1016/j.matlet.2014.07.145

Capanema N, Mansur A, Carvalho S, et al. Niobium-Doped Hydroxyapatite Bioceramics: Synthesis, Characterization and In Vitro Cytocompatibility. Materials. 2015; 8(7): 4191-4209. doi: 10.3390/ma8074191

Published
2024-03-07
How to Cite
Tian, Y., Cole, P., Xiao, Y., Akhter, A., Collins, T., Zhang, L., Huang, Y., & Tian, Z. R. (2024). Hydrothermally doping valve metal Nb into Titanate nanofibers structure for potentially engineering bone tissue . Nano and Medical Materials, 4(1), 375. https://doi.org/10.59400/nmm.v3i2.375
Section
Article