Hydrothermally doping valve metal Nb into Titanate nanofibers structure for potentially engineering bone tissue
Abstract
Recent research efforts in bone tissue engineering have been primarily directed towards manufacture-viable synthesis of biomaterials that can significantly enhance the biocompatibilities and osteogenic capabilities on the new biomaterials. This paper presents a straightforward, cost-effective, optimized, and well-controlled hydrothermal synthesis of Nb-doped potassium titanate nanofibers in high-purity. Characterization data revealed that the Nb-doping potassium titanate maintained the crystal structure, showing great promise for applications in bone tissue engineering.
References
Zhang B, Li J, He L, et al. Bio-surface coated titanium scaffolds with cancellous bone-like biomimetic structure for enhanced bone tissue regeneration. Acta Biomaterialia. 2020; 114: 431-448. doi: 10.1016/j.actbio.2020.07.024
Min Q, Liu J, Zhang Y, et al. Dual Network Hydrogels Incorporated with Bone Morphogenic Protein-7-Loaded Hyaluronic Acid Complex Nanoparticles for Inducing Chondrogenic Differentiation of Synovium-Derived Mesenchymal Stem Cells. Pharmaceutics. 2020; 12(7): 613. doi: 10.3390/pharmaceutics12070613
Wu T, Li B, Wang W, et al. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomaterials Science. 2020; 8(16): 4603-4615. doi: 10.1039/d0bm00523a
Oudadesse H, Najem S, Mosbahi S, et al. Development of hybrid scaffold: Bioactive glass nanoparticles/chitosan for tissue engineering applications. Journal of Biomedical Materials Research Part A. 2020; 109(5): 590-599. doi: 10.1002/jbm.a.37043
Nie L, Deng Y, Li P, et al. Hydroxyethyl Chitosan-Reinforced Polyvinyl Alcohol/Biphasic Calcium Phosphate Hydrogels for Bone Regeneration. ACS Omega. 2020; 5(19): 10948-10957. doi: 10.1021/acsomega.0c00727
Photo-crosslinked alginate nano-hydroxyapatite paste for bone tissue engineering - IOPscience. Available online: https://iopscience.iop.org/article/10.1088/1748-605X/ab9551/meta (accessed on 14 November 2023).
Yang L, Gao C, Wei D, et al. Nanotechnology for treating osteoporotic vertebral fractures. International Journal of Nanomedicine. 2015; 5139. doi: 10.2147/ijn.s85037
Venkataramana C, Botsa SM, Shyamala P, et al. Photocatalytic degradation of polyethylene plastics by NiAl2O4 spinels-synthesis and characterization. Chemosphere. 2021; 265: 129021. doi: 10.1016/j.chemosphere.2020.129021
Saravanan S, Vimalraj S, Anuradha D. Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair. Biomedicine & Pharmacotherapy. 2018; 107: 908-917. doi: 10.1016/j.biopha.2018.08.072
Mohammadi M, Mousavi Shaegh SA, Alibolandi M, et al. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. Journal of Controlled Release. 2018; 274: 35-55. doi: 10.1016/j.jconrel.2018.01.032
Aldaadaa A, Al Qaysi M, Georgiou G, et al. Physical properties and biocompatibility effects of doping SiO2 and TiO2 into phosphate-based glass for bone tissue engineering. Journal of Biomaterials Applications. 2018; 33(2): 271-280. doi: 10.1177/0885328218788832
Hashemi A, Ezati M, Mohammadnejad J, et al. Chitosan Coating of TiO2 Nanotube Arrays for Improved Metformin Release and Osteoblast Differentiation. International Journal of Nanomedicine. 2020; 15: 4471-4481. doi: 10.2147/ijn.s248927
Liang F, Zhou L, Wang K. Apatite Formation on Porous Titanium by Alkali and Heat-Treatment. Surface and Coatings Technology. 2003; 165(2): 133-139. doi: 10.1016/S0257-8972(02)00735-1
Marins NH, Lee BEJ, e Silva RM, et al. Niobium pentoxide and hydroxyapatite particle loaded electrospun polycaprolactone/gelatin membranes for bone tissue engineering. Colloids and Surfaces B: Biointerfaces. 2019; 182: 110386. doi: 10.1016/j.colsurfb.2019.110386
Cadafalch Gazquez G, Chen H, Veldhuis SA, et al. Flexible Yttrium-Stabilized Zirconia Nanofibers Offer Bioactive Cues for Osteogenic Differentiation of Human Mesenchymal Stromal Cells. ACS Nano. 2016; 10(6): 5789-5799. doi: 10.1021/acsnano.5b08005
Hwang C, Park S, Kang IG, et al. Tantalum-coated polylactic acid fibrous membranes for guided bone regeneration. Materials Science and Engineering: C. 2020; 115: 111112. doi: 10.1016/j.msec.2020.111112
Zhang J, Huang D, Liu S, et al. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Materials Science and Engineering: C. 2019; 105: 110054. doi: 10.1016/j.msec.2019.110054
Dong W, Cogbill A, Zhang T, et al. Multifunctional, Catalytic Nanowire Membranes and the Membrane-Based 3D Devices. The Journal of Physical Chemistry B. 2006; 110(34): 16819-16822. doi: 10.1021/jp0637633
Dong W, Zhang T, Epstein J, et al. Multifunctional Nanowire Bioscaffolds on Titanium. Chemistry of Materials. 2007; 19(18): 4454-4459. doi: 10.1021/cm070845a
Cole P, Tian Y, Thornburgh S, et al. Hydrothermal synthesis of valve metal Zr-doped titanate nanofibers for bone tissue engineering. Nano and Medical Materials. 2023; 3(2): 249. doi: 10.59400/nmm.v3i2.249
Xiao Y, Tian Y, Zhan Y, Zhu J. Degradation of organic pollutants in flocculated liquid digestate using photocatalytic titanate nanofibers: Mechanism and response surface optimization. Frontiers of Agricultural Science and Engineering. 2023; 10(3), 492-502. doi: 10.15302/j-fase-2023503
Yuan ZY, Zhang XB, Su BL. Moderate hydrothermal synthesis of potassium titanate nanowires. Applied Physics A. 2004; 78(7): 1063-1066. doi: 10.1007/s00339-003-2165-x
Bi H, Zhu S, Liang Y, et al. Nb-Doped TiO2 with Outstanding Na/Mg-Ion Battery Performance. ACS Omega. 2023; 8(6): 5893-5900. doi: 10.1021/acsomega.2c07689
Balbinot G de S, Bahlis EA da C, Visioli F, et al. Polybutylene-adipate-terephthalate and niobium-containing bioactive glasses composites: Development of barrier membranes with adjusted properties for guided bone regeneration. Materials Science and Engineering: C. 2021; 125: 112115. doi: 10.1016/j.msec.2021.112115
Wang X, Liu SJ, Qi YM, et al. Behavior of potassium titanate whisker in simulated body fluid. Materials Letters. 2014; 135: 139-142. doi: 10.1016/j.matlet.2014.07.145
Capanema N, Mansur A, Carvalho S, et al. Niobium-Doped Hydroxyapatite Bioceramics: Synthesis, Characterization and In Vitro Cytocompatibility. Materials. 2015; 8(7): 4191-4209. doi: 10.3390/ma8074191
Copyright (c) 2024 Yang Tian, Parker Cole, Yiting Xiao, Abdussamad Akhter, Trenton Collins, Lu Zhang, Yan Huang, Z. Ryan Tian
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it for any purpose, even commercially, under the condition that the authors are given credit. With this license, authors hold the copyright.