The planetary ball milling of different powders yields similar granulometry

  • Clarissa Ciarlantini Department of Chemistry, Sapienza University of Rome, Rome 00185, Italy
  • Antonella Piozzi Department of Chemistry, Sapienza University of Rome, Rome 00185, Italy
  • Sergio Ammendola Ambiotec di SA via Appia Nord 47, 04012 Cisterna di Latina, Italy
Article ID: 2466
Keywords: ball milling; DLS; nanoparticles; nutraceuticals; top-down method

Abstract

The main objectives of nanotechnology include the establishment of processes for the development and control of the nanoparticles’ size and shape. Bottom-up or top-down methods can be used to achieve these objectives, but independently various parameters such as rotational speed, temperature, revolution time, and others must be controlled. However, both methods can be expensive, especially from an industrial point of view. To reduce production costs, we have investigated the feasibility of applying an identical top-down process to compounds with different chemical and physical properties. Starting from powders with very variable particle size, we arrive at powders with a particle size practically indistinguishable from the point of view of pharmaceutical technology. This procedure can be useful in industrial preparations.

References

[1]Singh N, Vayer P, Tanwar S, et al. Drug discovery and development: introduction to the general public and patient groups. Frontiers in Drug Discovery. 2023; 3. doi: 10.3389/fddsv.2023.1201419

[2]Mok ZH. The effect of particle size on drug bioavailability in various parts of the body. Pharmaceutical Science Advances. 2024; 2: 100031. doi: 10.1016/j.pscia.2023.100031

[3]Nijhu RS, Khatun A, Hossen MdF. A comprehensive review of particle size analysis techniques. International Journal of Pharmaceutical Research and Development. 2024; 6(1): 01-05. doi: 10.33545/26646862.2024.v6.i1a.37

[4]Chendo C, Pinto JF, Paisana MC. Comprehensive powder flow characterization with reduced testing. International Journal of Pharmaceutics. 2023; 642: 123107. doi: 10.1016/j.ijpharm.2023.123107

[5]Malik S, Muhammad K, Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules. 2023; 28(2): 661. doi: 10.3390/molecules28020661

[6]Campos EJ, Campos A, Martins J, et al. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomedicine: Nanotechnology, Biology and Medicine. 2017; 13(6): 2101-2113. doi: 10.1016/j.nano.2017.04.008

[7]Bayda S, Adeel M, Tuccinardi T, et al. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules. 2019; 25(1): 112. doi: 10.3390/molecules25010112

[8]Hammami I, Alabdallah NM, jomaa AA, et al. Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University - Science. 2021; 33(7): 101560. doi: 10.1016/j.jksus.2021.101560

[9]Shabatina TI, Gromova YA, Vernaya OI, et al. Pharmaceutical Nanoparticles Formation and Their Physico-Chemical and Biomedical Properties. Pharmaceuticals. 2024; 17(5): 587. doi: 10.3390/ph17050587

[10]Dheyab MA, Aziz AA, Moradi Khaniabadi P, et al. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. International Journal of Molecular Sciences. 2022; 23(13): 7400. doi: 10.3390/ijms23137400

[11]Bapat RA, Chaubal TV, Dharmadhikari S, et al. Recent advances of gold nanoparticles as biomaterial in dentistry. International Journal of Pharmaceutics. 2020; 586: 119596. doi: 10.1016/j.ijpharm.2020.119596

[12]Meher A, Tandi A, Moharana S, et al. Silver nanoparticle for biomedical applications: A review. Hybrid Advances. 2024; 6: 100184. doi: 10.1016/j.hybadv.2024.100184

[13]Li X, Han Z, Wang T, et al. Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke. Biomaterials. 2022; 291: 121904. doi: 10.1016/j.biomaterials.2022.121904

[14]Bhatta A, Krishnamoorthy G, Marimuthu N, et al. Chlorin e6 decorated doxorubicin encapsulated chitosan nanoparticles for photo-controlled cancer drug delivery. International Journal of Biological Macromolecules. 2019; 136: 951-961. doi: 10.1016/j.ijbiomac.2019.06.127

[15]Vijay Kumar Thakur KS, Joshy ST. Nanoparticles for Drug Delivery (Gels Horizons: From Science to Smart Materials), 1st ed. Springer; 2021.

[16]Brugnoli B, Perna G, Alfano S, et al. Nanostructured Poly-l-lactide and Polyglycerol Adipate Carriers for the Encapsulation of Usnic Acid: A Promising Approach for Hepatoprotection. Polymers. 2024; 16(3): 427. doi: 10.3390/polym16030427

[17]Hussain FS, Quasim Abro N, Ahmed N, et al. Nano-antivirals: A comprehensive review. Frontiers. 2022; 4. doi.org/10.3389/fnano.2022.1064615

[18]Khalbas AH, Albayati TM, Ali NS, et al. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review. South African Journal of Chemical Engineering. 2024; 50: 261-280. doi: 10.1016/j.sajce.2024.08.013

[19]Timilsena YP, Haque MdA, Adhikari B. Encapsulation in the Food Industry: A Brief Historical Overview to Recent Developments. Food and Nutrition Sciences. 2020; 11(06): 481-508. doi: 10.4236/fns.2020.116035

[20]Hawthorne D, Pannala A, Sandeman S, et al. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. Journal of Drug Delivery Science and Technology. 2022; 78: 103936. doi: 10.1016/j.jddst.2022.103936

[21]Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology. 2018; 16(1). doi: 10.1186/s12951-018-0392-8

[22]Favaro-Trindade CS, de Matos Junior FE, Okuro PK, et al. Encapsulation of Active Pharmaceutical Ingredients in Lipid Micro/Nanoparticles for Oral Administration by Spray-Cooling. Pharmaceutics. 2021; 13(8): 1186. doi: 10.3390/pharmaceutics13081186

[23]Li L, Zeng Y, Chen M, et al. Application of Nanomicelles in Enhancing Bioavailability and Biological Efficacy of Bioactive Nutrients. Polymers. 2022; 14(16): 3278. doi: 10.3390/polym14163278

[24]Saiyad M, Shah N. Nanopolymers in drug delivery system. Materials Today: Proceedings. 2022; 67: 25-30. doi: 10.1016/j.matpr.2022.05.019

[25]Chavda VP, Patel AB, Mistry KJ, et al. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Frontiers in Oncology. 2022; 12. doi: 10.3389/fonc.2022.867655

[26]Malamatari M. The Importance of Drug Delivery in the Clinical Development and Lifecycle of Drug Products with Examples from Authorised Medicinal Products. Processes 2023, 11, 2919. https://doi.org/10.3390/pr11102919

[27]Guimarães D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. International Journal of Pharmaceutics. 2021; 601: 120571. doi: 10.1016/j.ijpharm.2021.120571

[28]Subroto E, Andoyo R, Indiarto R. Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants. 2023; 12(3): 633. doi: 10.3390/antiox12030633

[29]Rawat PS, Ravi PR, Mahajan RR. Design, pharmacokinetic, and pharmacodynamic evaluation of a lecithin-chitosan hybrid nanoparticle-loaded dual-responsive in situ gel of nebivolol for effective treatment of glaucoma. Discover Nano. 2024; 19(1). doi: 10.1186/s11671-024-04109-2

[30]Li T, Lu XM. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioactive Materials. 2022; 11: 268–282. doi: 10.1016/j.bioactmat.2021.09.029

[31]Das CGA, Kumar VG, Dhas TS, et al. Nanomaterials in anticancer applications and their mechanism of action - A review. Nanomedicine: Nanotechnology, Biology and Medicine. 2023; 47: 102613. doi: 10.1016/j.nano.2022.102613

[32]Marchetti M, De Berardis B, Bigioni I, et al. In Vitro Antiviral and Anti-Inflammatory Activities of N-Acetylglucosamine: Development of an Alternative and Safe Approach to Fight Viral Respiratory Infections. International Journal of Molecular Sciences. 2023; 24(6): 5129. doi: 10.3390/ijms24065129

[33]Liu Y, Yang G, Jin S, et al. Development of High‐Drug‐Loading Nanoparticles. ChemPlusChem. 2020; 85(9): 2143-2157. doi: 10.1002/cplu.202000496

[34]Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances. 2021; 2(6): 1821-1871. doi: 10.1039/d0ma00807a

[35]Majeed M, Nagabhushanam K, Lawrence L, et al. Boswellia serrata Extract Containing 30% 3-Acetyl-11-Keto-Boswellic Acid Attenuates Inflammatory Mediators and Preserves Extracellular Matrix in Collagen-Induced Arthritis. Frontiers in Physiology. 2021; 12. doi: 10.3389/fphys.2021.735247

[36]Ragab EA, El Wahab MFA, Doghish AS, et al. The journey of boswellic acids from synthesis to pharmacological activities. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2024; 397: 1477-1504. doi: 10.1007/s00210-023-02725-w

[37]Zhang Z, Wang W, Xu P, et al. Synthesis and anti-inflammatory activities of two new N-acetyl glucosamine derivatives. Scientific Reports. 2024; 14(1). doi: 10.1038/s41598-024-61780-2

[38]Bigio B, Azam S, Mathé AA, et al. The neuropsychopharmacology of acetyl-L-carnitine (LAC): basic, translational and therapeutic implications. Discover Mental Health. 2024; 4(1). doi: 10.1007/s44192-023-00056-z

[39]Meera P, Uusi-Oukari M, Lipshutz GS, et al. GABAA receptors as plausible molecular targets and mediators for taurine and homotaurine actions. Frontiers in Pharmacology. 2023; 14. doi: 10.3389/fphar.2023.1271203

[40]Farkas N, Kramar JA. Dynamic light scattering distributions by any means. Journal of Nanoparticle Research. 2021; 23(5). doi: 10.1007/s11051-021-05220-6

[41]Koppel DE. Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants. The Journal of Chemical Physics. 1972; 57(11): 4814-4820. doi: 10.1063/1.1678153

[42]Lawson CL, Hanson RJ. Solving Least Squares Problems. Englewood Cliffs, NJ: Prentice Hall; 1974.

[43]Miura M, Maiorov B, Sato M, et al. Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition. NPG Asia Materials. 2017; 9(11): e447-e447. doi: 10.1038/am.2017.197

[44]Rezvani Z, Goli SAH. Fabrication, physicochemical properties and structural characteristics of nanoparticles from carrot pomace and its insoluble dietary fiber. Food Hydrocolloids. 2023; 145: 109131. doi: 10.1016/j.foodhyd.2023.109131

[45]He Y, Huang H, Fan M, et al. Fabrication and physicochemical characterization of copper oxide–pyrrhotite nanocomposites for the cytotoxic effects on HepG2 cells and the mechanism. Nanotechnology Reviews. 2023; 12(1). doi: 10.1515/ntrev-2023-0152

[46]Cutroneo M, Havranek V, Mackova A, et al. Nanoparticles produced by laser ablation in organic solvent for polylactic acid-based polymer. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2023; 542: 61-65. doi: 10.1016/j.nimb.2023.06.003

[47]Meischein M, Ludwig A. Upscaling nanoparticle synthesis by sputter deposition in ionic liquids. Journal of Nanoparticle Research. 2021; 23(6). doi: 10.1007/s11051-021-05248-8

[48]Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, et al. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. Nanomaterials. 2023; 13(18): 2586. doi: 10.3390/nano13182586

[49]Zhu Q, Wang S, Wang X, et al. Bottom-Up Engineering Strategies for High-Performance Thermoelectric Materials. Nano-Micro Letters. 2021; 13(1). doi: 10.1007/s40820-021-00637-z

[50]Zhang D. Significant Progress of Initiated Chemical Vapor Deposition in Manufacturing Soft Non-spherical Nanoparticles: Upgrading to the Condensed Droplet Polymerization Approach and Key Technological Aspects. ChemEngineering. 2024; 8(1): 2. doi: 10.3390/chemengineering8010002

[51]Xie Q, Tang J, Guo S, et al. Recent Progress of Preparation Strategies in Organic Nanoparticles for Cancer Phototherapeutics. Molecules. 2023; 28(16): 6038. doi: 10.3390/molecules28166038

[52]Bokov D, Turki Jalil A, Chupradit S, et al. Nanomaterial by Sol‐Gel Method: Synthesis and Application. Wang Z, ed. Advances in Materials Science and Engineering. 2021; 2021(1). doi: 10.1155/2021/5102014

[53]Mariano A, Bigioni I, Ammendola S, et al. The Formulation of the N-Acetylglucosamine as Nanoparticles Increases Its Anti-Inflammatory Activities: An In Vitro Study. Bioengineering. 2023; 10(3): 343. doi: 10.3390/bioengineering10030343

[54]Khataei S, H.Al-Musawi M, Asadi K, et al. Effect of molecular weight and content of polyvinylpyrrolidone on cell proliferation, loading capacity and properties of electrospun green tea essential oil-incorporated polyamide-6/polyvinylpyrrolidone nanofibers. Journal of Drug Delivery Science and Technology. 2023; 82: 104310. doi: 10.1016/j.jddst.2023.104310

Published
2025-03-07
How to Cite
Ciarlantini, C., Piozzi, A., & Ammendola, S. (2025). The planetary ball milling of different powders yields similar granulometry. Nano and Medical Materials, 5(1), 2466. https://doi.org/10.59400/nmm2466
Section
Article