Nanomaterial marvels: Pioneering applications and cutting-edge advancements in drug delivery

  • Priyajit Chatterjee University Science Instrumentation Centre, The University of Burdwan
  • Subhendu Dhibar Colloid Chemistry Laboratory, Department of Chemistry, The University of Burdwan
Keywords: nanomaterials, drug delivery systems, nanotechnology, targeted delivery, artificial intelligence

Abstract

Nanotechnology has revolutionized the field of medicine, particularly in the development of novel drug delivery systems. Nanomaterial-based drug delivery systems offer several advantages over traditional methods, including enhanced therapeutic efficacy, improved bioavailability, targeted delivery, and reduced side effects. This review provides an overview of the applications and recent advancements in nanomaterial-based drug delivery systems. The first section of this review focuses on the different types of nanomaterials used in drug delivery, including liposomes, polymeric nanoparticles, dendrimers, carbon-based nanomaterials, and metallic nanoparticles. Each nanomaterial has unique physicochemical properties that can be tailored to optimize drug encapsulation, release, and targeting. The second section highlights the importance of nanoscale characterization techniques in evaluating the properties and performance of nanomaterial-based drug delivery systems. Characterization techniques such as dynamic light scattering, transmission electron microscopy, atomic force microscopy, and spectroscopic methods enable researchers to analyze particle size, morphology, surface charge, drug loading, and release kinetics. The third section discusses the application of nanomaterial-based drug delivery systems in various therapeutic areas, including cancer treatment, cardiovascular diseases, infectious diseases, and neurological disorders. These systems can be engineered to selectively accumulate at the target site, enhancing drug efficacy and minimizing off-target effects. The fourth section explores recent advancements in nanomaterial-based drug delivery systems, including stimulus-responsive and multifunctional nanocarriers. Stimuli-responsive systems can release drugs in response to specific triggers, such as changes in pH, temperature, or enzymatic activity, leading to site-specific drug release. Multifunctional nanocarriers combine drug delivery with diagnostic imaging, allowing real-time monitoring of drug distribution and therapeutic response. The final section addresses the challenges and future perspectives in the field of nanomaterial-based drug delivery systems. Challenges include regulatory considerations, toxicity concerns, scalability, and clinical translation. Future directions involve the development of personalized nanomedicine, combination therapy approaches, and integration with other emerging technologies, such as artificial intelligence and gene editing. In conclusion, nanomaterial-based drug delivery systems have shown great potential for improving the efficacy and safety of therapeutic interventions. The advancements in nanotechnology offer exciting opportunities for the development of next-generation drug delivery platforms, opening new avenues for personalized medicine and targeted therapies. However, further research and collaborations are required to address the challenges associated with clinical translation and ensure the safe and effective implementation of these systems in clinical practice.

References

Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: The past and the future. Advanced Drug Delivery Reviews 2013; 65(1): 104–120. doi: 10.1016/j.addr.2012.10.003

Jain AK, Swarnakar NK, Godugu C, et al. The effect of the oral administration of polymeric nanoparticles on the efficacy and toxicity of tamoxifen. Biomaterials 2011; 32(2): 503–515. doi: 10.1016/j.biomaterials.2010.09.037

Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16–20. doi: 10.1021/nn900002m

Jain KK. Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Review of Neurotherapeutics 2007; 7(4): 363–372. doi: 10.1586/14737175.7.4.363

Duan X, Chan C, Lin W. Nanoparticle-mediated immunogenic cell death enables and potentiates cancer immunotherapy. Angewandte Chemie International Edition 2019; 58(3): 670–680. doi: 10.1002/anie.201804882

Prasad M, Lambe UP, Brar B, et al. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomedicine & Pharmacotherapy 2018; 97: 1521–1537. doi: 10.1016/j.biopha.2017.11.026

Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nature Reviews Drug Discovery 2008; 7(9): 771–782. doi: 10.1038/nrd2614

Zhang Y, Guo Y, Xianyu Y, et al. Nanomaterials for ultrasensitive protein detection. Advanced Materials 2013; 25(28): 3802–3819. doi: 10.1002/adma.201301334

Geim AK, Novoselov KS. The rise of graphene. Nature Materials 2007; 6(3): 183–191. doi: 10.1038/nmat1849

Chopra NG, Luyken RJ, Cherrey K, et al. Boron nitride nanotubes. Science 1995; 269: 966–967. doi: 10.1126/science.269.5226.966

Singh R, Dutt S, Sharma P, et al. Future of nanotechnology in food industry: Challenges in processing, packaging, and food safety. Global Challenges 2023; 7(4): 2200209. doi: 10.1002/gch2.202200209

Vélez MA, Perotti MC, Santiago L, et al. Bioactive compounds delivery using nanotechnology: design and applications in dairy food. In: Grumezescu AM (editor). Nutrient Delivery: Nanotechnology in the Agri-Food Industry. Academic Press; 2017. pp. 221–250. doi: 1016/B978-0-12-804304-2.00006-8

Banerjee A, Maity S, Mastrangelo CH. Nanotechnology for biosensors: A review. Available online: https://arxiv.org/abs/2101.02430 (accessed on 14 November 2023).

McClements DJ. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter 2012; 8: 1719–1729. doi: 10.1039/c2sm06903b

Worrall EA, Hamid A, Mody KT, et al. Nanotechnology for plant disease management. Agronomy 2018; 8(12): 285. doi: 10.3390/agronomy8120285

de Sousa MS, Schlogl AE, Estanislau FR, et al. Nanotechnology in packaging for food industry: Past, present, and future. Coatings 2023; 13(8): 1411. doi: 10.3390/coatings13081411

McClements DJ. Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals. Biotechnology Advances 2020; 38: 107287. doi: 10.1016/j.biotechadv.2018.08.004

Khodakovskaya MV, Kim BS, Kim JN, et al. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013; 9(1): 115–123. doi: 10.1002/smll.201201225

Lohani A, Verma A, Joshi H, et al. Nanotechnology-based cosmeceuticals. ISRN Dermatol 2014; 2014: 843687. doi: 10.1155/2014/843687

Nohynek GJ, Dufour EK, Roberts MS. Nanotechnology, cosmetics and the skin: Is there a health risk? Skin Pharmacology and Physiology 2008; 21(3): 136–149. doi: 10.1159/000131078

Mihranyan A, Ferraz N, Strømme M. Current status and future prospects of nanotechnology in cosmetics. Progress in Materials Science 2012; 57(5): 875–910. doi: 10.1016/j.pmatsci.2011.10.001

Raj S, Jose S, Sumod US, Sabitha M. Nanotechnology in cosmetics: Opportunities and challenges. Journal of Pharmacy and Bioallied Sciences 2012; 4(3):186–193. doi: 10.4103/0975-7406.99016

Gupta V, Mohapatra S, Mishra H, et al. Nanotechnology in cosmetics and cosmeceuticals—A review of latest advancements. Gels 2022; 8(3): 173. doi: 10.3390/gels8030173

Santos JS, Barradas TN, Tavares GD. Advances in nanotechnology-based hair care products applied to hair shaft and hair scalp disorders. International Journal of Cosmetic Science 2022; 44(3): 320–332. doi: 10.1111/ics.12780

Vijaya N, Umamathi T, Grace Baby A, et al. Chapter 13—Nanomaterials in fragrance products. In: Nanda A, Nanda S, Nguyen TA, et al. (editors). Nanocosmetics Fundamentals, Applications and Toxicity Micro and Nano Technologies. Elsevier; 2020. pp. 247–265. doi: 10.1016/B978-0-12-822286-7.00012-7

Biswas R, Alam M, Sarkar A, et al. Application of nanotechnology in food: Processing, preservation, packaging and safety assessment. Heliyon 2022; 8(11): e11795. doi: 10.1016/j.heliyon.2022.e11795

Siafaka PI, Özcan Bülbül E, Okur ME, et al. The application of nanogels as efficient drug delivery platforms for dermal/transdermal delivery. Gels 2023; 9(9): 753. doi: 10.3390/gels9090753

Anjum S, Ishaque S, Fatima H, et al. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives. Pharmaceuticals 2021; 14(8): 707. doi: 10.3390/ph14080707

Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nature Reviews Drug Discovery 13(11): 813–827. doi: 10.1038/nrd4333

Chen F, Ehlerding EB, Cai W. Theranostic nanoparticles. Journal of Nuclear Medicine 2014; 55(12): 1919–1922. doi: 10.2967/jnumed.114.146019

Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011; 6(4): 715–728. doi: 10.2217/nnm.11.19

Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance. Journal of Controlled Release 2012; 162(1): 45–55. doi: 10.1016/j.jconrel.2012.05.051

Stephan MT, Irvine DJ. Enhancing cell therapies from the outside in: Cell surface engineering using synthetic nanomaterials. Nano Today 2011; 6(3): 309–325. doi: 10.1016/j.nantod.2011.04.001

Hartshorn CM, Bradbury MS, Lanza GM, et al. Nanotechnology strategies to advance outcomes in clinical cancer care. ACS Nano 2018; 12(1): 24–43. doi: 10.1021/acsnano.7b05108

Fayaz AM, Balaji K, Girilal M, et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine 2010; 6(1): 103–109. doi: 10.1016/j.nano.2009.04.006

Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: A comprehensive updated review on current status, challenges and emerging opportunities. Journal of Microencapsulation 2021; 38(6): 414–436. doi: 10.1080/02652048.2021.1942275

Zhang L, Pornpattananangku D, Hu CMJ, Huang CM. Development of nanoparticles for antimicrobial drug delivery. Current Medicinal Chemistry 2010; 17(6): 585–594. doi: 10.2174/092986710790416290

Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: Physiological factors affecting therapeutic effectiveness of aerosolized medications. British Journal of Clinical Pharmacology 2003; 56(6): 588–599. doi: 10.1046/j.1365-2125.2003.01892.x

Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2007; 2(12): 751–760. doi: 10.1038/nnano.2007.387

Trucillo P. Drug carriers: Classification, administration, release profiles, and industrial approach. Processes 2021; 9(3): 470. doi: 10.3390/pr9030470

Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discovery Today 2003; 8(24): 1112–1120. doi: 10.1016/S1359-6446(03)02903-9

Larrañeta E, McCrudden MTC, Courtenay AJ, Donnelly RF. Microneedles: A new frontier in nanomedicine delivery. Pharmaceutical Research 2016; 33(5): 1055–1073. doi: 10.1007/s11095-016-1885-5

Bourges JL, Gautier SE, Delie F, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Investigative Ophthalmology & Visual Science 2003; 44(8): 3562–3569. doi: 10.1167/iovs.02-1068

Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nature Reviews Drug Discovery 2004; 3(2): 115–124. doi: 10.1038/nrd1304

Dhuria SV, Hanson LR, Frey WH II. Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. Journal of Pharmaceutical Sciences 2010; 99(4): 1654–1673. doi: 10.1002/jps.21924

Peer D, Karp JM, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2007; 2(12): 751–760. doi: 10.1038/nnano.2007.387

Yagublu V, Karimova A, Hajibabazadeh J, et al. Overview of physicochemical properties of nanoparticles as drug carriers for targeted cancer therapy. Journal of Functional Biomaterials 2022; 13(4): 196. doi: 10.3390/jfb13040196

Petros R, DeSimone J. Strategies in the design of nanoparticles for therapeutic applications. Nature Reviews Drug Discovery 2010; 9(8): 615-627. doi: 10.1038/nrd2591

Couvreur P. Nanoparticles in drug delivery: Past, present and future. Advanced Drug Delivery Reviews 2013; 65(1): 21–23. doi: 10.1016/j.addr.2012.04.010

Hasan A, Morshed M, Memic A, et al. Nanoparticles in tissue engineering: Applications, challenges and prospects. International Journal of Nanomedicine 2018; 13: 5637–5655. doi: 10.2147/IJN.S153758

Seabra AB, Durán N. Nanotoxicology of metal oxide nanoparticles. Metals 2015; 5(2): 934–975. doi: 10.3390/met5020934

Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622–627. doi: 10.1126/science.1114397

Fu PP, Xia Q, Hwang HM, et al. Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis 2014; 22(1): 64–75. doi: 10.1016/j.jfda.2014.01.005

Ho DK, Nichols BLB, Edgar KJ, et al. Challenges and strategies in drug delivery systems for treatment of pulmonary infections. European Journal of Pharmaceutics and Biopharmaceutics 2019; 144: 110–124. doi: 10.1016/j.ejpb.2019.09.002

Xie X, Zhang Y, Li F, et al. Challenges and opportunities from basic cancer biology for nanomedicine for targeted drug delivery. Current Cancer Drug Targets 2019; 19(4): 257–276. doi: 10.2174/1568009618666180628160211

Thanki K, Gangwal RP, Sangamwar AT, Jain S. Oral delivery of anticancer drugs: Challenges and opportunities. Journal of Controlled Release 2013; 170(1): 15–40. doi: 10.1016/j.jconrel.2013.04.020

Weng Y, Liu J, Jin S, et al. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharmaceutica Sinica B 2017; 7(3): 281–291. doi: 10.1016/j.apsb.2016.09.001

Afzal O, Altamimi ASA, Nadeem MS, et al. Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials 2022; 12(24): 4494. doi: 10.3390/nano12244494

Published
2023-12-08
How to Cite
Chatterjee, P., & Dhibar, S. (2023). Nanomaterial marvels: Pioneering applications and cutting-edge advancements in drug delivery. Nano and Medical Materials, 3(2), 220. https://doi.org/10.59400/nmm.v3i2.220
Section
Review Articles