Biomedical applications of nanomaterials: A short review
Abstract
Nanomaterials have emerged as transformative tools in the biomedical field due to their distinct physical and chemical properties. This review delves into the synthesis, classifications, and applications of nanomaterials, emphasizing advancements in drug delivery, bioimaging, and diagnostics. Unique aspects include a focused discussion on sol-gel synthesis methods and recent trends in nanomaterial applications for personalized medicine. The review concludes with a future perspective on overcoming challenges such as toxicity and regulatory issues, paving the way for sustainable biomedical innovations.
References
[1]Srivastava S, Bhargava A. Green Nanoparticles: The Future of Nanobiotechnology. Springer Singapore; 2022.
[2]Lee J, Adegoke O, Park EY. High‐Performance Biosensing Systems Based on Various Nanomaterials as Signal Transducers. Biotechnology Journal. 2018; 14(1). doi: 10.1002/biot.201800249
[3]Damokhi A, Yousefinejad S, Fakherpour A, et al. Improvement of performance and function in respiratory protection equipment using nanomaterials. Journal of Nanoparticle Research. 2022; 24(4). doi: 10.1007/s11051-022-05460-0
[4]McLellan K, Yoon Y, Leung SN, et al. Recent Progress in Transparent Conductors Based on Nanomaterials: Advancements and Challenges. Advanced Materials Technologies. 2020; 5(4). doi: 10.1002/admt.201900939
[5]Zhao X, Xuan J, Li Q, et al. Roles of Low‐Dimensional Nanomaterials in Pursuing Human–Machine–Thing Natural Interaction. Advanced Materials. 2023; 35(50). doi: 10.1002/adma.202207437
[6]Zhang Y, Tang H, Chen W, et al. Nanomaterials Used in Fluorescence Polarization Based Biosensors. International Journal of Molecular Sciences. 2022; 23(15): 8625. doi: 10.3390/ijms23158625
[7]Beeram SR, Rodriguez E, Doddavenkatanna S, et al. Nanomaterials as stationary phases and supports in liquid chromatography. Electrophoresis. 2017; 38(19): 2498-2512. doi: 10.1002/elps.201700168
[8]Lun D, Xu K. Recent Progress in Gas Sensor Based on Nanomaterials. Micromachines. 2022; 13(6): 919. doi: 10.3390/mi13060919
[9]Tang K, Xue J, Zhu Y, et al. Design and synthesis of bioinspired nanomaterials for biomedical application. WIREs Nanomedicine and Nanobiotechnology. 2023; 16(1). doi: 10.1002/wnan.1914
[10]Cui F, Liu J, Zhang T, et al. Low-dimensional nanomaterials as an emerging platform for cancer diagnosis and therapy. Frontiers in Bioengineering and Biotechnology. 2023; 11. doi: 10.3389/fbioe.2023.1101673
[11]Xu M, Song Y, Wang J, et al. Anisotropic transition metal–based nanomaterials for biomedical applications. VIEW. 2021; 2(4). doi: 10.1002/viw.20200154
[12]Zong M, Zhang X, Wang Y, et al. Synthesis of 2D Hexagonal Hematite Nanosheets and the Crystal Growth Mechanism. Inorganic Chemistry. 2019; 58(24): 16727-16735. doi: 10.1021/acs.inorgchem.9b02883
[13]Srinivasan V, Patnaik SG, Andar A, et al. Fractal Carbon Islands on Plastic Substrates for Enhancement in Directional and Beaming Fluorescence Emission. ACS Applied Nano Materials. 2019; 2(10): 6103-6109. doi: 10.1021/acsanm.9b01535
[14]Ioana Fort C, Cosmin Cotet L, Cristian Pop L, et al. Advanced Graphene-Based Materials for Electrochemical Biomarkers and Protein Detection. Chemistry of Graphene - Synthesis, Reactivity, Applications and Toxicities. Published online June 26, 2024. doi: 10.5772/intechopen.114011
[15]Ge L, Su M, Gao C, et al. Application of Au cage/Ru(bpy)32+ nanostructures for the electrochemiluminescence detection of K562 cancer cells based on aptamer. Sensors and Actuators B: Chemical. 2015; 214: 144-151. doi: 10.1016/j.snb.2015.03.020
[16]Galizia M, Chi WS, Smith ZP, et al. 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules. 2017; 50(20): 7809-7843. doi: 10.1021/acs.macromol.7b01718
[17]Preston AS, Hughes RA, Demille TB, et al. Copper Template Design for the Synthesis of Bimetallic Copper–Rhodium Nanoshells through Galvanic Replacement. Particle & Particle Systems Characterization. 2018; 35(5). doi: 10.1002/ppsc.201700420
[18]Park SK, Kang YC. MOF-Templated N-Doped Carbon-Coated CoSe2 Nanorods Supported on Porous CNT Microspheres with Excellent Sodium-Ion Storage and Electrocatalytic Properties. ACS Applied Materials & Interfaces. 2018; 10(20): 17203-17213. doi: 10.1021/acsami.8b03607
[19]Vashishtha P, Griffith BE, Brown AAM, et al. Performance Enhanced Light-Emitting Diodes Fabricated from Nanocrystalline CsPbBr3 with In Situ Zn2+ Addition. ACS Applied Electronic Materials. 2020; 2(12): 4002-4011. doi: 10.1021/acsaelm.0c00827
[20]Xu H, Xi K, Gao X, et al. Flexible Hybridized Nanogenerators Based on a Reduced Graphene Oxide Nanosheet-Decorated Piezoceramic Skeleton to Impact Mechanical and Thermal Energy Harvesting. ACS Applied Nano Materials. 2023; 7(1): 1120-1129. doi: 10.1021/acsanm.3c05070
[21]Si KJ, Guo P, Shi Q, et al. Self-Assembled Nanocube-Based Plasmene Nanosheets as Soft Surface-Enhanced Raman Scattering Substrates toward Direct Quantitative Drug Identification on Surfaces. Analytical Chemistry. 2015; 87(10): 5263-5269. doi: 10.1021/acs.analchem.5b00328
[22]Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Advanced Therapeutics. 2020; 3(11). doi: 10.1002/adtp.202000061
[23]Antolini E. Effect of Atomic Ordering on the Activity for Methanol and Formic Acid Oxidation of Pt‐Based Electrocatalysts. Energy Technology. 2019; 7(5). doi: 10.1002/ente.201800553
[24]Ohara S, Yamamoto K. Synthesis of Tailor-Made Ceramic Nanocrystals by Organic Ligand-Assisted Hydrothermal Method. Journal of the Japan Society of Powder and Powder Metallurgy. 2017; 64(3): 109-115. doi: 10.2497/jjspm.64.109
[25]Bokov D, Turki Jalil A, Chupradit S, et al. Nanomaterial by Sol‐Gel Method: Synthesis and Application. Wang Z, ed. Advances in Materials Science and Engineering. 2021; 2021(1). doi: 10.1155/2021/5102014
[26]Lee KJ, Yeh YT, Cheng HZ, et al. Friction and Wear Behaviors of Carbon Nanotube Reinforced Silica and Alumina Matrix Composites Fabricated by Catalyst Sol-Gel and CVD Process. Materials transactions. 2018; 59(2): 280-289. doi: 10.2320/matertrans.m2017266
[27]Whelan M, Tobin E, Cassidy J, et al. Optimization of Anodic Oxidation of Aluminum for Enhanced Adhesion and Corrosion Properties of Sol-Gel Coatings. Journal of The Electrochemical Society. 2016; 163(5): C205-C212. doi: 10.1149/2.0741605jes
[28]Le Dizès Castell R, Mirzahossein E, Grzelka M, et al. Visualization of the Sol–Gel Transition in Porous Networks Using Fluorescent Viscosity-Sensitive Probes. The Journal of Physical Chemistry Letters. 2024; 15(2): 628-635. doi: 10.1021/acs.jpclett.3c02634
[29]Harper-Leatherman AS, Pacer ER, Kosciuszek ND. Encapsulating Cytochrome c in Silica Aerogel Nanoarchitectures without Metal Nanoparticles while Retaining Gas-phase Bioactivity. Journal of Visualized Experiments. 2016; (109). doi: 10.3791/53802-v
[30]Myasoedova TN, Kalusulingam R, Mikhailova TS. Sol-Gel Materials for Electrochemical Applications: Recent Advances. Coatings. 2022; 12(11): 1625. doi: 10.3390/coatings12111625
[31]Li J, Bai H, Feng Z. Advances in the Modification of Silane-Based Sol-Gel Coating to Improve the Corrosion Resistance of Magnesium Alloys. Molecules. 2023; 28(6): 2563. doi: 10.3390/molecules28062563
[32]Hegde V. The Multifaceted Applications of Al2O3 Nanoparticles in Biomedicine: A Comprehensive Review. International Journal of Biomedical Engineering and Technology. 2024; 1(1). doi: 10.1504/ijbet.2024.10062831
[33]Al-darwesh MY, Ibrahim SS, Mohammed MA. A review on plant extract mediated green synthesis of zinc oxide nanoparticles and their biomedical applications. Results in Chemistry. 2024; 7: 101368. doi: 10.1016/j.rechem.2024.101368
[34]Santos HA, Savina IN. Introduction to the RSC Advances themed collection on Nanomaterials in drug delivery. RSC Advances. 2023; 13(3): 1933-1934. doi: 10.1039/d2ra90132c
[35]Hayakawa N, Yamada T, Kitayama Y, et al. Cellular Interaction Regulation by Protein Corona Control of Molecularly Imprinted Polymer Nanogels Using Intrinsic Proteins. ACS Applied Polymer Materials. 2020; 2(4): 1465-1473. doi: 10.1021/acsapm.9b01149
[36]Wang Y, Santos A, Evdokiou A, et al. An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. Journal of Materials Chemistry B. 2015; 3(36): 7153-7172. doi: 10.1039/c5tb00956a
[37]Cheng Z, Cui H, Xiao Q, et al. From Octahedron Crystals to 2D Silicon Nanosheets: Facet‐Selective Cleavage and Biophotonic Applications. Small. 2020; 16(45). doi: 10.1002/smll.202003594
[38]Rezaei B, Yari P, Sanders SM, et al. Magnetic Nanoparticles: A Review on Synthesis, Characterization, Functionalization, and Biomedical Applications. Small. 2023; 20(5). doi: 10.1002/smll.202304848
[39]Moreira AF. Nanomaterials in Drug Delivery Applications. Nanomaterials. 2022; 12(20): 3565. doi: 10.3390/nano12203565
[40]Wang Z, Wang S, Zhang X, et al. Temperature and Tumor Microenvironment Dual Responsive Mesoporous Magnetic Nanospheres for Magnetothermal Effect-Induced Cancer Theranostics. CCS Chemistry. 2023; 5(2): 469-485. doi: 10.31635/ccschem.022.202201805
[41]Mei X, Hu T, Wang Y, et al. Recent advancements in two‐dimensional nanomaterials for drug delivery. WIREs Nanomedicine and Nanobiotechnology. 2019; 12(2). doi: 10.1002/wnan.1596
[42]Brezhnev A, Tang FK, Kwan CS, et al. One-Pot Preparation of Cetylpyridinium Chloride-Containing Nanoparticles for Biofilm Eradication. ACS Applied Bio Materials. 2023; 6(3): 1221-1230. doi: 10.1021/acsabm.2c01080
[43]Xu Y. Nanomaterials used in cancer treatment based on drug delivery system. Wang A (editor). Third International Conference on Biological Engineering and Medical Science (ICBioMed2023); 2024.
[44]Sun C, Tan Y, Xu H. From Selenite to Diselenide-Containing Drug Delivery Systems. ACS Materials Letters. 2020; 2(9): 1173-1177. doi: 10.1021/acsmaterialslett.0c00272
[45]Zhang Z. Functionalized Nanoparticle Drug Delivery System Applied to the Diagnosis and Treatment of Tumor Cells. Shen Y, Luo X, Liu Z, eds. BIO Web of Conferences. 2023; 72: 02013. doi: 10.1051/bioconf/20237202013
[46]Chatterjee P, Dhibar S. Nanomaterial marvels: Pioneering applications and cutting-edge advancements in drug delivery. Nano and Medical Materials; 2023.
[47]Digiacomo L, Pozzi D, Palchetti S, et al. Impact of the protein corona on nanomaterial immune response and targeting ability. WIREs Nanomedicine and Nanobiotechnology. 2020; 12(4). doi: 10.1002/wnan.1615
[48]Bardhan N. Nanomaterials in diagnostics, imaging and delivery: Applications from COVID-19 to cancer. MRS Communications. 2022; 12(6): 1119-1139. doi: 10.1557/s43579-022-00257-7
[49]Iavicoli I, Leso V, Beezhold DH, et al. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks. Toxicology and Applied Pharmacology. 2017; 329: 96-111. doi: 10.1016/j.taap.2017.05.025
[50]El-Ramady H, El-Henawy A, Amer M, et al. Agro-Pollutants and their Nano-Remediation from Soil and Water: A Mini-Review. Environment, Biodiversity and Soil Security. 2020; 0(0): 0-0. doi: 10.21608/jenvbs.2020.47751.1111
[51]Garriga R, Herrero-Continente T, Palos M, et al. Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. Nanomaterials. 2020; 10(8): 1617. doi: 10.3390/nano10081617
[52]Tasso M, Huvelle MAL. Bessone ID & Picco AS. Toxicity assessment of nanomaterials. In: Sharma S, Javed Y (editors). Magnetic Nanoheterostructures. Springer nature link; 2020.
[53]Raja IS, Song SJ, Kang MS, et al. Toxicity of Zero- and One-Dimensional Carbon Nanomaterials. Nanomaterials. 2019; 9(9): 1214. doi: 10.3390/nano9091214
[54]Boyes WK, van Thriel C. Neurotoxicology of Nanomaterials. Chemical Research in Toxicology. 2020; 33(5): 1121-1144. doi: 10.1021/acs.chemrestox.0c00050
[55]Hwang R, Mirshafiee V, Zhu Y, et al. Current approaches for safer design of engineered nanomaterials. Ecotoxicology and Environmental Safety. 2018; 166: 294-300. doi: 10.1016/j.ecoenv.2018.09.077
[56]Lee JY, Mushtaq S, Park JE, et al. Radioanalytical Techniques to Quantitatively Assess the Biological Uptake and In Vivo Behavior of Hazardous Substances. Molecules. 2020; 25(17): 3985. doi: 10.3390/molecules25173985
[57]Sarasamma S, Audira G, Juniardi S, et al. Evaluation of the Effects of Carbon 60 Nanoparticle Exposure to Adult Zebrafish: A Behavioral and Biochemical Approach to Elucidate the Mechanism of Toxicity. International Journal of Molecular Sciences. 2018; 19(12): 3853. doi: 10.3390/ijms19123853
[58]Padnya P, Stoikov I. Design of Micro- and Nanoparticles: Self-Assembly and Application. Nanomaterials. 2022; 12(3): 430. doi: 10.3390/nano12030430
[59]Wang K, Zhu X, Yu E, et al. Therapeutic Nanomaterials for Neurological Diseases and Cancer Therapy. Journal of Nanomaterials. 2020; 2020: 1-18. doi: 10.1155/2020/2047379
[60]Yang Z, Zhang X, Zhang J, et al. Application of Biomass‐Based Nanomaterials in Energy. Advanced Energy and Sustainability Research. 2023; 4(12). doi: 10.1002/aesr.202300141
[61]Ugwuanyi ED, Nwokediegwu ZQS, Dada MA, et al. The impact of nanomaterials in enhancing wastewater treatment processes: A review. Magna Scientia Advanced Research and Reviews. 2024; 10(1): 273-285. doi: 10.30574/msarr.2024.10.1.0030
[62]Navya PN, Daima HK. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Convergence. 2016; 3(1). doi: 10.1186/s40580-016-0064-z
[63]Maity A, Polshettiwar V. Scalable and Sustainable Synthesis of Size-Controlled Monodisperse Dendritic Fibrous Nanosilica Quantified by E-Factor. ACS Applied Nano Materials. 2018; 1(7): 3636-3643. doi: 10.1021/acsanm.8b00761
[64]Zhang X, Zhang W, Li W. Preparation and application of carbon-based hollow structured nanomaterials. Characterization and Application of Nanomaterials. 2022; 5(2): 83. doi: 10.24294/can.v5i2.1700
[65]Basu DK, Das M, Kundu S. A Review of the Application of Nanotechnology in Different Spheres of Life Sciences. International Journal of Research Publication and Reviews. 2023; 4(9): 2128-2143. doi: 10.55248/gengpi.4.923.92463
[66]Hutchison JE. The Road to Sustainable Nanotechnology: Challenges, Progress and Opportunities. ACS Sustainable Chemistry & Engineering. 2016; 4(11): 5907-5914. doi: 10.1021/acssuschemeng.6b02121
[67]Nko Okina Solomon, Peter Simpa, Olubunmi Adeolu Adenekan, et al. Sustainable nanomaterials’ role in green supply chains and environmental sustainability. Engineering Science & Technology Journal. 2024; 5(5): 1678-1694. doi: 10.51594/estj.v5i5.1136
[68]Soares SF, Fernandes T, Daniel-da-Silva AL, et al. The controlled synthesis of complex hollow nanostructures and prospective applications. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2019; 475(2224): 20180677. doi: 10.1098/rspa.2018.0677
[69]Rajakumar G, Zhang XH, Gomathi T, et al. Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review. Processes. 2020; 8(3): 355. doi: 10.3390/pr8030355
[70]Shahazi R, Majumdar S, Saddam AI, et al. Carbon nanomaterials for biomedical applications: A comprehensive review. Nano Carbons. 2023; 1(1): 448. doi: 10.59400/n-c.v1i1.448
[71]Kerativitayanan P, Carrow JK, Gaharwar AK. Nanomaterials for Engineering Stem Cell Responses. Advanced Healthcare Materials. 2015; 4(11): 1600-1627. doi: 10.1002/adhm.201500272
[72]Srinath MK, R. A, Dwivedi SP, Gupta C, Ali HA, Lakhanpal S. Development of Multifunctional Nanomaterials and Devices for Biomedical Applications. Swadesh Kumar S, ed. E3S Web of Conferences. 2023; 430: 01123. doi: 10.1051/e3sconf/202343001123
[73]Shin Y, Song SJ, Hong S, et al. Multifaceted Biomedical Applications of Functional Graphene Nanomaterials to Coated Substrates, Patterned Arrays and Hybrid Scaffolds. Nanomaterials. 2017; 7(11): 369. doi: 10.3390/nano7110369
[74]Guo Z, Ouyang J, Kim NY, et al. Emerging Two‐Dimensional Nanomaterials for Cancer Therapy. ChemPhysChem. 2019; 20(19): 2417-2433. doi: 10.1002/cphc.201900551
[75]Min S, Yu Q, Ye J, et al. Nanomaterials with Glucose Oxidase-Mimicking Activity for Biomedical Applications. Molecules. 2023; 28(12): 4615. doi: 10.3390/molecules28124615
[76]Wang J, Zhao G, Feng L, et al. Metallic Nanomaterials with Biomedical Applications. Metals. 2022; 12(12): 2133. doi: 10.3390/met12122133
[77]Rabiee N, Ahmadi S, Iravani S, et al. Functionalized Silver and Gold Nanomaterials with Diagnostic and Therapeutic Applications. Pharmaceutics. 2022; 14(10): 2182. doi: 10.3390/pharmaceutics14102182
[78]Akgöl S, Ulucan‐Karnak F, kuru Cİ, et al. The usage of composite nanomaterials in biomedical engineering applications. Biotechnology and Bioengineering. 2021; 118(8): 2906-2922. doi: 10.1002/bit.27843
Copyright (c) 2024 Hüseyin Okan Durmuş
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it for any purpose, even commercially, under the condition that the authors are given credit. With this license, authors hold the copyright.