Threats of nano/microplastics to reproduction and offspring: Potential mechanisms and perspectives

  • Mei Ha School of Nursing, Chongqing Medical and Pharmaceutical College
  • Wanzhen Tang School of Nursing, Chongqing Medical and Pharmaceutical College
  • Jichun Huang School of Nursing, Chongqing Medical and Pharmaceutical College
  • Changjiang Liu NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute
Ariticle ID: 443
82 Views, 65 PDF Downloads, 0 Supplementary Table 1 Downloads
Keywords: nano/microplastics, reproduction, offspring, adverse effects

Abstract

Due to the ubiquitous occurrence in the aquatic environment and terrestrial ecosystem and underlying eco-environmental risks, nano/microplastics (NPs/MPs) have sparked great public concerns. The purpose of this work is aimed to summarize the harmful influence of NPs/MPs on reproduction and offspring health and further explore the potential mechanisms of action, thereby facilitating the more comprehensive understanding of NPs/MPs features. Literature search databases included EMBASE, Web of Science, and PubMed. The study selection and data extraction were implemented according to the inclusion criteria. NPs/MPs could accumulate and trigger reproductive toxic responses and thereafter generate deleterious effects on the offspring health. Accordingly, the reproductive toxicity of NPs/MPs was characterized as the sperm deformity, decline in sperm count and motility, follicular growth tardiness, ovarian fibrosis, granulosa cell death, disorder of reproductive hormone secretion, as well as the fetal growth restriction, glycolipid metabolism disorder, and inflammatory responses of the next generation. Additionally, mechanism research revealed that NPs/MPs exposure brought about inflammatory responses and oxidative stress and thereafter, destroyed the blood-testis barrier (BTB) integrity, motivated spermatogenic cell apoptosis by activating the JNK and p38/MAPK-Nrf2/NF-κB pathways, and induced ovarian granulosa cell pyroptosis and apoptosis and subsequent ovarian fibrosis via the Wnt/β-Catenin and NLRP3/Caspase-1 pathways. Nevertheless, this work also highlighted the imperative requirements for scientific and systematic risk assessments of NPs/MPs, so as to identify the feasible risk mitigation strategies.

Author Biography

Changjiang Liu, NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning Science and Technology Research Institute

Pro. Liu Changjiang have been engaged in Toxicology and Environmental Toxicology research for more than ten years. Specifically speaking, I have been studying the adverse health effects of environmental pollutants, elucidated the underlying toxicological mechanisms, and performed the intervention
studies. In these years I pay more attention to the traditional contaminants (such as PCBs, DDT, and phthalates) and emerging contaminants like triclosan, bisphenols, pyrethroids, and microplastics, aiming to unveil their reproductive toxicity, thyrotoxicity, and etc. on humans and animals, and further putting forward effective interventions.

References

D’Angelo S, Meccariello R. Microplastics: A Threat for Male Fertility. International Journal of Environmental Research and Public Health. 2021; 18(5): 2392. doi: 10.3390/ijerph18052392

Feng Y, Tu C, Li R, et al. A systematic review of the impacts of exposure to micro- and nano-plastics on human tissue accumulation and health. Eco-Environment & Health. 2023; 2(4): 195-207. doi: 10.1016/j.eehl.2023.08.002

Allen S, Allen D, Phoenix VR, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience. 2019; 12(5): 339-344. doi: 10.1038/s41561-019-0335-5

Wen S, Chen Y, Tang Y, et al. Male reproductive toxicity of polystyrene microplastics: Study on the endoplasmic reticulum stress signaling pathway. Food and Chemical Toxicology. 2023; 172: 113577. doi: 10.1016/j.fct.2022.113577

Abbasi S, Turner A. Human exposure to microplastics: A study in Iran. Journal of Hazardous Materials. 2021; 403: 123799. doi: 10.1016/j.jhazmat.2020.123799

Ibrahim YS, Tuan Anuar S, Azmi AA, et al. Detection of microplastics in human colectomy specimens. JGH Open. 2020; 5(1): 116-121. doi: 10.1002/jgh3.12457

Schwabl P, Köppel S, Königshofer P, et al. Detection of Various Microplastics in Human Stool. Annals of Internal Medicine. 2019; 171(7): 453-457. doi: 10.7326/m19-0618

Yang J, Kamstra J, Legler J, et al. The impact of microplastics on female reproduction and early life. Animal Reproduction. 2023; 20(2). doi: 10.1590/1984-3143-ar2023-0037

Zhao Q, Zhu L, Weng J, et al. Detection and characterization of microplastics in the human testis and semen. Science of The Total Environment. 2023; 877: 162713. doi: 10.1016/j.scitotenv.2023.162713

Senathirajah K, Attwood S, Bhagwat G, et al. Estimation of the mass of microplastics ingested—A pivotal first step towards human health risk assessment. Journal of Hazardous Materials. 2021; 404: 124004. doi: 10.1016/j.jhazmat.2020.124004

Mohamed Nor NH, Kooi M, Diepens NJ, et al. Lifetime Accumulation of Microplastic in Children and Adults. Environmental Science & Technology. 2021; 55(8): 5084-5096. doi: 10.1021/acs.est.0c07384

Pasquini E, Ferrante F, Passaponti L, et al. Microplastics reach the brain and interfere with honey bee cognition. Science of The Total Environment. 2024; 912: 169362. doi: 10.1016/j.scitotenv.2023.169362

Cao J, Xu R, Geng Y, et al. Exposure to polystyrene microplastics triggers lung injury via targeting toll-like receptor 2 and activation of the NF-κB signal in mice. Environmental Pollution. 2023; 320: 121068. doi: 10.1016/j.envpol.2023.121068

Li A, Wang Y, Kulyar MF e A, et al. Environmental microplastics exposure decreases antioxidant ability, perturbs gut microbial homeostasis and metabolism in chicken. Science of The Total Environment. 2023; 856: 159089. doi: 10.1016/j.scitotenv.2022.159089

Wang S, Wu H, Shi X, et al. Polystyrene microplastics with different sizes induce the apoptosis and necroptosis in liver through the PTEN/PI3K/AKT/autophagy axis. Science of The Total Environment. 2023; 899: 165461. doi: 10.1016/j.scitotenv.2023.165461

Xiong X, Gao L, Chen C, et al. The microplastics exposure induce the kidney injury in mice revealed by RNA-seq. Ecotoxicology and Environmental Safety. 2023; 256: 114821. doi: 10.1016/j.ecoenv.2023.114821

Yang S, Li M, Kong RYC, et al. Reproductive toxicity of micro- and nanoplastics. Environment International. 2023; 177: 108002. doi: 10.1016/j.envint.2023.108002

Pereira R, Sousa M. Morphological and Molecular Bases of Male Infertility: A Closer Look at Sperm Flagellum. Genes. 2023; 14(2): 383. doi: 10.3390/genes14020383

Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. Published online March 29, 2021: n71. doi: 10.1136/bmj.n71

Hooijmans CR, Rovers MM, de Vries RB, et al. SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology. 2014; 14(1). doi: 10.1186/1471-2288-14-43

Amereh F, Babaei M, Eslami A, et al. The emerging risk of exposure to nano(micro)plastics on endocrine disturbance and reproductive toxicity: From a hypothetical scenario to a global public health challenge. Environmental Pollution. 2020; 261: 114158. doi: 10.1016/j.envpol.2020.114158

Xie X, Deng T, Duan J, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicology and Environmental Safety. 2020; 190: 110133. doi: 10.1016/j.ecoenv.2019.110133

Ijaz MU, Shahzadi S, Samad A, et al. Dose-Dependent Effect of Polystyrene Microplastics on the Testicular Tissues of the Male Sprague Dawley Rats. Dose-Response. 2021; 19(2): 155932582110198. doi: 10.1177/15593258211019882

Li S, Wang Q, Yu H, et al. Polystyrene microplastics induce blood–testis barrier disruption regulated by the MAPK-Nrf2 signaling pathway in rats. Environmental Science and Pollution Research. 2021; 28(35): 47921-47931. doi: 10.1007/s11356-021-13911-9

Hou B, Wang F, Liu T, et al. Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice. Journal of Hazardous Materials. 2021; 405: 124028. doi: 10.1016/j.jhazmat.2020.124028

Wei Z, Wang Y, Wang S, et al. Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology. 2022; 465: 153059. doi: 10.1016/j.tox.2021.153059

Jin H, Yan M, Pan C, et al. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway. Particle and Fibre Toxicology. 2022; 19(1). doi: 10.1186/s12989-022-00453-2

Wen S, Zhao Y, Liu S, et al. Microplastics-perturbed gut microbiota triggered the testicular disorder in male mice: Via fecal microbiota transplantation. Environmental Pollution. 2022; 309: 119789. doi: 10.1016/j.envpol.2022.119789

Jin H, Ma T, Sha X, et al. Polystyrene microplastics induced male reproductive toxicity in mice. Journal of Hazardous Materials. 2021; 401: 123430. doi: 10.1016/j.jhazmat.2020.123430

An R, Wang X, Yang L, et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology. 2021; 449: 152665. doi: 10.1016/j.tox.2020.152665

Hou J, Lei Z, Cui L, et al. Polystyrene microplastics lead to pyroptosis and apoptosis of ovarian granulosa cells via NLRP3/Caspase-1 signaling pathway in rats. Ecotoxicology and Environmental Safety. 2021; 212: 112012. doi: 10.1016/j.ecoenv.2021.112012

Liu Z, Zhuan Q, Zhang L, et al. Polystyrene microplastics induced female reproductive toxicity in mice. Journal of Hazardous Materials. 2022; 424: 127629. doi: 10.1016/j.jhazmat.2021.127629

Aghaei Z, Sled JG, Kingdom JC, et al. Maternal exposure to polystyrene micro- and nanoplastics causes fetal growth restriction in mice. Environmental Science & Technology Letters. 2022; 9: 426-430. doi: 10.1021/acs.estlett.2c00186

Chen G, Xiong S, Jing Q, et al. Maternal exposure to polystyrene nanoparticles retarded fetal growth and triggered metabolic disorders of placenta and fetus in mice. Science of The Total Environment. 2023; 854: 158666. doi: 10.1016/j.scitotenv.2022.158666

Huang T, Zhang W, Lin T, et al. Maternal exposure to polystyrene nanoplastics during gestation and lactation induces hepatic and testicular toxicity in male mouse offspring. Food and Chemical Toxicology. 2022; 160: 112803. doi: 10.1016/j.fct.2021.112803

Interdonato L, Siracusa R, Fusco R, et al. Endocrine Disruptor Compounds in Environment: Focus on Women’s Reproductive Health and Endometriosis. International Journal of Molecular Sciences. 2023; 24(6): 5682. doi: 10.3390/ijms24065682

Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: First evidence of microplastics in human placenta. Environment International. 2021; 146: 106274. doi: 10.1016/j.envint.2020.106274

Amereh F, Amjadi N, Mohseni-Bandpei A, et al. Placental plastics in young women from general population correlate with reduced foetal growth in IUGR pregnancies. Environmental Pollution. 2022; 314: 120174. doi: 10.1016/j.envpol.2022.120174

Krakowiak P, Smith EN, de Bruyn G, et al. Risk Factors and Outcomes Associated with a Short Umbilical Cord. Obstetrics & Gynecology. 2004; 103(1): 119-127. doi: 10.1097/01.aog.0000102706.84063.c7

Marcelino RC, Cardoso RM, Domingues ELBC, et al. The emerging risk of microplastics and nanoplastics on the microstructure and function of reproductive organs in mammals: A systematic review of preclinical evidence. Life Sciences. 2022; 295: 120404. doi: 10.1016/j.lfs.2022.120404

Published
2024-02-19
How to Cite
Ha, M., Tang, W., Huang, J., & Liu, C. (2024). Threats of nano/microplastics to reproduction and offspring: Potential mechanisms and perspectives. Journal of Toxicological Studies, 2(1). https://doi.org/10.59400/jts.v2i1.443
Section
Article