Microstructure of the dentate gyrus and spontaneous alternation behaviour of male Wistar rats following Rauvolfia vomitoria and Gongronema latifolium extracts administration
Abstract
Rauvolfia vomitoria (RV) and Gongronema latifolium (GL) are medicinal plants used for the local treatment of various health issues. Their activities on the brain motivated this investigation on the histology and immunohistochemistry of the dentate gyrus and spontaneous alternation behaviour (SAB) of adult Wistar rats following RV root bark and GL leaf extract administrations. Twenty young adult Wistar rats (130–160 g) were assigned into four groups: Group 1 served as the control (5 mL/kg of distilled water placebo), while the test groups 2–4 were, respectively, singly administered 200 mg/kg of RV, 200 mg/kg of GL, and their combination. The administrations were oral and lasted for seven days. A T-maze SAB test was carried out, and the animals were sacrificed immediately after ketamine hydrochloride intraperitoneal anaesthesia. Serial sections of the hippocampal region from perfused rat brains were stained with Cresyl fast violet and immunolabelled with neuronal nuclei (NeuN) for neurons and glial fibrillary acidic protein (GFAP) for astrocytes. Results indicated that SAB was significantly (p < 0.05) lower in the test groups. Histologically, Nissl was less distributed in the RV and GL-only groups but not in the combined group, while there was less NeuN positivity in the RV group, with the GL and RV + GL groups not affected. There was less positive GFAP expression in individual RV and GL groups, but not in the RV + GL combined group, all compared with the control. In conclusion, the combination of RV and GL did not improve SAB but modulated Nissl, NeuN, and GFAP expression in the dentate gyrus.
References
[1] Adeleye OA, Femi-Oyewo MN, Bamiro OA, et al. Ethnomedicinal herbs in African traditional medicine with potential activity for the prevention, treatment, and management of coronavirus disease 2019. Future Journal of Pharmaceutical Sciences. 2021; 7(1). doi: 10.1186/s43094-021-00223-5
[2] Beljanski M. Traditional use of Rauwolfia vomitoria: The Beljanski Foundation. Available online: https://www.beljanski.org/engl/press/traditional-use-of-rauwolfia-vomitoria (accessed on 3 April 2023).
[3] Singh B, Singh B, Kishor A, et al. Exploring Plant-Based Ethnomedicine and Quantitative Ethnopharmacology: Medicinal Plants Utilized by the Population of Jasrota Hill in Western Himalaya. Sustainability. 2020; 12(18): 7526. doi: 10.3390/su12187526
[4] Ekong MB, Peter AI, Edagha IA, et al. Rauwolfia vomitoria inhibits olfaction and modifies olfactory bulb cells. Brain Research Bulletin. 2016; 124: 206-213. doi: 10.1016/j.brainresbull.2016.05.008
[5] Bisong SA, Abuo FE, Udefa AL, et al. Comparative Effects of Alkaloid and Saponin Fractions of Rauwolfia vomitoria on Social Behaviour and Depression in a CD1 Mouse Model of Memory Impairment. Archives of Current Research International. 2019; 16(1): 1-11. doi: 10.9734/acri/2019/v16i130083
[6] Fang T, Xue Z sheng, Li J, et al. Rauwolfia vomitoria extract suppresses benign prostatic hyperplasia by reducing expression of androgen receptor and 5α-reductase in a rat model. Journal of Integrative Medicine. 2021; 19(3): 258-264. doi: 10.1016/j.joim.2020.12.002
[7] Ekong MB, Ekpene UU, Nwakanma AA, et al. The combination of the extracts of Rauwolfia vomitoria and Gongronema latifolium show protective effects on the cerebellum. Synergy. 2017; 5: 29-34. doi: 10.1016/j.synres.2017.10.001
[8] Nduohosewo IS, Ekong MB. Murine’s amygdala microstructure and elevated plus maze activities following R. vomitoria root bark and G. latifolium leaf extracts administration. Anatomical Science International. 2020; 95(3): 342-355. doi: 10.1007/s12565-020-00527-1
[9] B. Ekong M, A. Nwakanma A. Rauwolfia vomitoria and Gongronema latifolium extracts influences cerebellar cortex. Alzheimer’s, Dementia & Cognitive Neurology. 2017; 1(3). doi: 10.15761/adcn.1000115
[10] Ekong MB, Peter AI, Ekpene UU. Co-administration of Rauwolfia vomitoria with Gongronema latifolium or Vernonia amygdalina on spatial learning, memory, and some bio-molecules. Asian Journal of Medical Sciences. 2015; 7(1): 82-87. doi: 10.3126/ajms.v7i1.11156
[11] Akpanabiatu MI. Effects of the biochemical interactions of vitamin A and E on the toxicity of root bark extract of Rauwolfia vomitoria (Apocynaceae) in Wistar albino rats. University of Calabar; 2006.
[12] Chinonye II, Chijioke C, Iwuji CS, et al. Chemical and Medicinal Properties of Rauwolfia vomitoria (AFZEL) Harvested from the South Eastern Nigeria. Asian Journal of Chemical Sciences. 2021; 56-71. doi: 10.9734/ajocs/2021/v10i419103
[13] Lobay D. Rauwolfia in the Treatment of Hypertension. Integr Med (Encinitas). 2015; 14(3): 40-6.
[14] Fapojuwomi OA, Asinwa IO. Assessment of Medicinal Values of Rauvolfia vomitoria (Afzel) in Ibadan Municipality. Greener Journal of Medical Sciences. 2013; 3(2): 037-041. doi: 10.15580/gjms.2013.2.012013398
[15] Ekong MB, Peter AI, Ekpene UU, et al. Gongronema latifolium Modulates Rauwolfia vomitoria-Induced Behaviour and Histomorphology of the Cerebral Cortex. International Journal of Morphology. 2015; 33(1): 77-84. doi: 10.4067/s0717-95022015000100013
[16] Ekong M, Eluwa MA. Effect Of Aqueous Extract of Rauwolfia Vomitoria Root Bark on the Cytoarchitecture of the Cerebellum and Neurobehaviour of Adult Male Wistar Rats. The Internet Journal of Alternative Medicine. 2009; 6(2). doi: 10.5580/45
[17] Ekong MB, Peter MD, Peter AI, et al. Cerebellar neurohistology and behavioural effects of Gongronema latifolium and Rauwolfia vomitoria in mice. Metabolic Brain Disease. 2013; 29(2): 521-527. doi: 10.1007/s11011-013-9453-8
[18] Frederick Eleyinmi A, Sporns P, Bressler DC. Nutritional composition of Gongronema latifolium and Vernonia amygdalina. Nutrition & Food Science. 2008; 38(2): 99-109. doi: 10.1108/00346650810862975
[19] Eleyinmi AF. Chemical composition and antibacterial activity of Gongronema latifolium. Journal of Zhejiang University Science B. 2007; 8(5): 352-358. doi: 10.1631/jzus.2007.b0352
[20] Alogun ME, Besong EE, Obimma JN, et al. Gongronema Latifolium: A Phytochemical, Nutritional and Pharmacological Review. Journal of Physiology and Pharmacology Advances. 2016; 6(1): 811. doi: 10.5455/jppa.1969123104000
[21] Beshel JA, Beshel FN, Nku CU. Gongronema Latifolium: A Plant with Cardioprotective Potentials. International Journal of Trend in Scientific Research and Development. 2019; 3(2): 548-558. doi: 10.31142/ijtsrd21431
[22] Al-Hindi B, Yusoff NA, Ahmad M, et al. Safety assessment of the ethanolic extract of Gongronema latifolium Benth. leaves: a 90-day oral toxicity study in Sprague Dawley rats. BMC Complementary and Alternative Medicine. 2019; 19(1). doi: 10.1186/s12906-019-2573-x
[23] Okpala B. Benefits of Gongronema latifolium (utazi). Available online: https://www.globalfoodbook.com/benefitsofG.L. (accessed on 10 April 2023).
[24] Beshel JA, Palacios J, Beshel FN, et al. Blood pressure-reducing activity of Gongronema latifolium Benth. (Apocynaeceae) and the identification of its main phytochemicals by UHPLC Q-Orbitrap mass spectrometry. Journal of Basic and Clinical Physiology and Pharmacology. 2019; 31(1). doi: 10.1515/jbcpp-2018-0178
[25] Aquaisua AN, Mbadugha CC, Enobong IB, Ekong M. Effects of Rauvolfia vomitoria on the cerebellar histology, body and brain weights of albino wistar rats. Available online: https://www.researchgate.net/publication/330006420_Effects_of_rauvolfia_vomitoria_on_the_cerebellar_histology_body_and_brain_weights_of_albino_wistar_rats (accessed on 10 April 2023).
[26] Xavier GF, Costa VCI. Progress in Neuro-Psychopharmacology and Biological Psychiatry. Science Direct. 2009; 33(5): 762-773. doi: 10.1016/j.pnpbp.2009.03.036
[27] Aniol V, Manolova A, Gulyaeva N. Early Life Events and Maturation of the Dentate Gyrus: Implications for Neurons and Glial Cells. International Journal of Molecular Sciences. 2022; 23(8): 4261. doi: 10.3390/ijms23084261
[28] Tsetsenis T, Broussard JI, Dani JA. Dopaminergic regulation of hippocampal plasticity, learning, and memory. Frontiers in Behavioral Neuroscience. 2023; 16. doi: 10.3389/fnbeh.2022.1092420
[29] Takeda A, Tamano H. Is Vulnerability of the Dentate Gyrus to Aging and Amyloid-β1–42 Neurotoxicity Linked with Modified Extracellular Zn2+ Dynamics? Biological and Pharmaceutical Bulletin. 2018; 41(7): 995-1000. doi: 10.1248/bpb.b17-00871
[30] Mehrdad S. Learning and Memory Tests. Stanford Medicine Behavioral and Functional Neuroscience Laboratory; 2017.
[31] Deacon RMJ, Rawlins JNP. T-maze alternation in the rodent. Nature Protocols. 2006; 1(1): 7-12. doi: 10.1038/nprot.2006.2
[32] d’Isa R, Comi G, Leocani L. Apparatus design and behavioural testing protocol for the evaluation of spatial working memory in mice through the spontaneous alternation T-maze. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-00402-7
[33] Kim J, Kang H, Lee YB, et al. A quantitative analysis of spontaneous alternation behaviors on a Y-maze reveals adverse effects of acute social isolation on spatial working memory. Scientific Reports. 2023; 13(1). doi: 10.1038/s41598-023-41996-4
[34] Lalonde R. The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev. 2002; 26(1): 91-104.
[35] Ekong M, Ekpene U, Thompson F, et al. Effects of co-treatment of Rauwolfia vomitoria and Gongronema latifolium on neurobehaviour and the neurohistology of the cerebral cortex in mice. Internet Journal of Medical Update-EJOURNAL. 2015; 10(1): 3. doi: 10.4314/ijmu.v10i1.2
[36] Moon LDF. Chromatolysis: Do injured axons regenerate poorly when ribonucleases attack rough endoplasmic reticulum, ribosomes and RNA? Developmental Neurobiology. 2018; 78(10): 1011-1024. doi: 10.1002/dneu.22625
[37] Agozzino L, Balázsi G, Wang J, et al. How Do Cells Adapt? Stories Told in Landscapes. Annual Review of Chemical and Biomolecular Engineering. 2020; 11(1): 155-182. doi: 10.1146/annurev-chembioeng-011720-103410
[38] Gusel’nikova VV, Korzhevskiy DE. NeuN As a Neuronal Nuclear Antigen and Neuron Differentiation Marker. Acta Naturae. 2015; 7(2): 42-47. doi: 10.32607/20758251-2015-7-2-42-47
[39] Ünal-Çevik I, Kılınç M, Gürsoy-Özdemir Y, et al. Loss of NeuN immunoreactivity after cerebral ischemia does not indicate neuronal cell loss: a cautionary note. Brain Research. 2004; 1015(1-2): 169-174. doi: 10.1016/j.brainres.2004.04.032
[40] Luijerink L, Waters KA, Machaalani R. Immunostaining for NeuN Does Not Show all Mature and Healthy Neurons in the Human and Pig Brain: Focus on the Hippocampus. Applied Immunohistochemistry & Molecular Morphology. 2021; 29(6): e46-e56. doi: 10.1097/pai.0000000000000925
[41] Brenner M, Messing A. Regulation of GFAP Expression. ASN Neuro. 2021; 13: 175909142098120. doi: 10.1177/1759091420981206
[42] Özevren H, Deveci E, Tuncer MC. The effect of rosmarinic acid on deformities occurring in brain tissue by craniectomy method. Histopathological evaluation of IBA-1 and GFAP expressions. Acta Cirúrgica Brasileira. 2020; 35(4). doi: 10.1590/s0102-865020200040000006
[43] Lybeck A, Friberg H, Nielsen N, et al. Postanoxic electrographic status epilepticus and serum biomarkers of brain injury. Resuscitation. 2021; 158: 253-257. doi: 10.1016/j.resuscitation.2020.10.027
[44] Saab BJ, Georgiou J, Nath A, et al. NCS-1 in the Dentate Gyrus Promotes Exploration, Synaptic Plasticity, and Rapid Acquisition of Spatial Memory. Neuron. 2009; 63(5): 643-656. doi: 10.1016/j.neuron.2009.08.014
[45] Zhang J, Wei X, Zhang S, et al. Research on Network Model of Dentate Gyrus Based on Bionics. Journal of Healthcare Engineering. 2021; 2021: 1-12. doi: 10.1155/2021/4609741
[46] Hainmueller T, Bartos M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nature Reviews Neuroscience. 2020; 21(3): 153-168. doi: 10.1038/s41583-019-0260-z
Copyright (c) 2024 Moses B. Ekong, Ini-Obong G. Essien, Cecilia K. Bassey, Ogechi M. Akanu
This work is licensed under a Creative Commons Attribution 4.0 International License.