A NUMERICAL METHOD TO SOLVE THE VISCOSITY PROBLEM OF THE BURGERS EQUATION
Abstract
Considering the viscosity problem of the Burgers equation, we give a numerical solution using the Cole-Hopf transformation.
References
[1]B. Abbo, Nouvel algorithm numérique de résolution des équations différentielles ordinaries (EDO) et des équations aux dérivées partielles (EDP) non linéaires, Thèse de Doctorat unique, Université de Ouagadougou, 2007.
[2]B. Abbo, B. Some, O. So and G. Barro, A new numerical algorithm for solving nonlinear partial differential equations with initial and boundary conditions, Far East J. Appl. Math. 28(1) (2007), 37-52.
[3]M. Ablowitch and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, 1981.
[4]G. Adomian, A review the decomposition method in applied mathematics, J. Math. Anal. Appl. 135 (1988), 501-544.
[5]G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Pub., 1994.
[6]R. K. Dodd et al., Solution and Nonlinear Wave Equations, Academic Press, New York, 1982.
[7]J.-D. Fournier and U. Frisch, L’équation de burgers déterministe et statistique, Journal de Mécanique Théorique et Appliquée 2(5) (1983), 699-750.
[8]A. Guesima and N. Daili, Approche numérique de la solution entropique de l’équation d’évolution de bürgers par la méthode des lignes, Gen. Math. 17(2) (2009), 99-111.
[9]Ji-Huan He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul. 2(4) (1997), 230-235.
[10]Ji-Huan He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Meth. Appl. Mech. Eng. 167 (1998), 57-68.
[11]Ji-Huan He, Variational iteration method a kind of nonlinear analytical technique: some examples, Int. J. Non-Linear Mech. 34(4) (1999), 699-708.
[12]Mariana Malard, Sine-Gordon model: renormalization group solution and applications, Brazilian Journal of Physics 43(3) (2013), 182-198.
[13]Igor Podlubný, Fractional Differential Equations, Academic Press, United States, 1998.
[14]H. D. Wahlquist and F. B. Estabrook, Bäcklund transformation for solutions of the Korteweg-de Vries equation, Phys. Rev. Lett. 31 (1973), 1386-1390.
[15]A. M. Wazwaz, A reliable technique for solving linear and nonlinear Schrodinger equations by Adomian decomposition method, BIMAS 29(2) (2001), 125-134.
[16]Hans J. Wospakrik and Freddy P. Zen, Inhomogeneous Burgers equation and the Feynman-Kac path integral, 1998. https://doi.org/10.48550/arXiv.solv-int/9812014.
[17]Gérard Zongo, Ousséni So, Geneviève Barro, Youssouf Paré and Blaise Somé, A comparison of Adomian’s method and SBA method on the nonlinear Schrödinger’s equation, Far East J. Dyn. Syst. 29(4) (2017), 149-161.