NUMERICAL BLOW-UP TIME FOR NONLINEAR PARABOLIC PROBLEMS

  • Adou KoffiAchille Direction Pédagogique, Ecole Supérieure Africaine des TIC (ESATIC), UP Mathématiques, 18 BP 1501 Abidjan 18, Côte D’Ivoire
  • Diop FatouN. Direction Pédagogique, Ecole Supérieure Africaine des TIC (ESATIC), UP Mathématiques, 18 BP 1501 Abidjan 18, Côte D’Ivoire
  • N’Guessan Koffi Département de Mathématiques et Informatique, Université Alassane Ouattara de Bouaké, UFR-SED, 01 BP V 18 Bouaké 01, Côte D’Ivoire
  • Touré KidjégboAugustin Département de Mathématiques et Informatique, Institut National Polytechnique Houphouët-Boigny, UMRI Mathématiques et Nouvelles Technologies de L'Information, Yamoussoukro, BP 2444, Côte D'Ivoire
Article ID: 2574
Keywords: blow-up; nonlinear parabolic equation; finite difference scheme; numerical blow-up time

Abstract

In this paper, we analyze numerically some of the features of theblow-up phenomena arising from a nonlinear parabolic equationsubject to nonlinear boundary conditions. More precisely, we studynumerical approximations of solutions of the problem { ( log u ( x , t ) ) t = u x x ( x , t ) + u β 1 ( x , t ) , ( x , t ) ( 0 , 1 ) × ( 0 , T ) , u x ( 0 , t ) + u α ( 0 , t ) = 0 , t > 0 , u x ( 1 , t ) + u α ( 1 , t ) = 0 , t > 0 , u ( x , 0 ) = u 0 ( x ) γ > 0 , 0 x 1 , , where β α > 1. We obtain some:conditions under which thesolution of the semidiscrete form blows up in a finite time. Weestimate its semidiscrete blow-up time and also establish theconvergence of the semidiscrete blow-up time to the real one. Finally.we give some numerical experiments to illustrate our analysis.

References

[1]In this paper, we analyze numerically some of the features of theblow-up phenomena arising from a nonlinear parabolic equationsubject to nonlinear boundary conditions. More precisely, we studynumerical approximations of solutions of the problem

[2]http://www.w3.org/1998/Math/MathML" display="block"> {(log⁡u(x,t))t=uxx(x,t)+uβ−1(x,t),(x,t)∈(0,1)×(0,T),−ux(0,t)+uα(0,t)=0,t>0,ux(1,t)+uα(1,t)=0,t>0,u(x,0)=u0(x)≥γ>0,0≤x≤1,

[3]where http://www.w3.org/1998/Math/MathML" display="block"> β≥α>1. We obtain some:conditions under which thesolution of the semidiscrete form blows up in a finite time. Weestimate its semidiscrete blow-up time and also establish theconvergence of the semidiscrete blow-up time to the real one. Finally.we give some numerical experiments to illustrate our analysis.

Published
2025-01-10
How to Cite
KoffiAchille, A., FatouN., D., Koffi, N., & KidjégboAugustin, T. (2025). NUMERICAL BLOW-UP TIME FOR NONLINEAR PARABOLIC PROBLEMS. Advances in Differential Equations and Control Processes, 28. Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2574
Section
Articles