MULTIPLICITY OF POSITIVE PERIODIC SOLUTIONS FOR A NICHOLSON-TYPE BLOWFLIES MODEL WITH NONLINEAR DECIMATION TERMS

  • Yidi Zhao Department of Mathematics, Northeast Forestry University, Harbin 150040, P. R. China
  • Shaowen Liu Department of Mathematics, Northeast Forestry University, Harbin 150040, P. R. China
  • Yuqi Cao Department of Mathematics, Northeast Forestry University, Harbin 150040, P. R. China
  • Qing Ma Department of Mathematics, Northeast Forestry University, Harbin 150040, P. R. China
  • Yan Yan Department of Mathematics, Northeast Forestry University, Harbin 150040, P. R. China
Article ID: 2569
Keywords: Nicholson’s blowflies model; positive periodic solution; multiple time delays; Krasnoselskii’s fixed point theorem

Abstract

This study considers a Nicholson-type blowflies model with nonlinear decimation terms in a periodic environment. The sufficient condition for this model to have at least two positive periodic solutions is elucidated. Our result is obtained by applying the Krasnoselskii fixed point theorem. Example and its simulations are given to illustrate our result.

References

[1]K. Akbarzadeh, A. Saghafipour and N. Jesri et al., Spatial distribution of necrophagous flies of infraorder muscomorpha in Iran using geographical information system, J. Med. Entomol. 55 (2018), 1071-1085. http://doi.org/10.1093/jme/tjy098

[2]P. Amster and A. Déboli, Existence of positive T-periodic solutions of a generalized Nicholson’s blowflies model with a nonlinear harvesting term, Appl. Math. Lett. 25 (2012), 1203-1207. https://doi.org/10.1016/j.aml.2012.02.040

[3]L. Berezansky, E. Braverman and L. Idels, Nicholson’s blowflies differential equations revisited: Main results and open problems, Appl. Math. Model. 34 (2010), 1405-1417. https://doi.org/10.1016/j.apm.2009.08.027

[4]D. Calibeo-Hayes, S. S. Denning and S. M. Stringham et al., Mechanical transmission of turkey coronavirus by domestic houseflies (musca domestica linnaeaus), Avian. Dis. 47 (2003), 149-153. https://doi.org/10.1637/0005-2086(2003)047[0149:mtotcb]2.0.co;2

[5]D. F. Cook, S. C. Voss and J. T. D. Finch et al., The role of flies as pollinators of horticultural crops: an Australian case study with worldwide relevance, Insects, 11 (2020), 341. https://doi.org/10.3390/insects11060341

[6]H. S. Ding and J. J. Nieto, A new approach for positive almost periodic solutions to a class of Nicholson’s blowflies model, J. Comput. Appl. Math. 253 (2013), 249-254. https://doi.org/10.1016/j.cam.2013.04.028

[7]L. Duan and L. H. Huang, Pseudo almost periodic dynamics of delay Nicholson’s blowflies model with a linear harvesting term, Math. Method. Appl. Sci. 38 (2015), 1178-1189. https://doi.org/10.1002/mma.3138

[8]W. Gurney, S. Blyth and R. Nisbet, Nicholson’s blowflies (revisted), Nature 287 (1980), 17-21. https://doi.org/10.1038/287017a0

[9]M. R. S. Kulenovic, G. Ladas and Y. S. Sficas, Global attractivity in Nicholson’s blowflies, Appl. Anal. 43 (1992), 109-124. https://doi.org/10.1080/00036819208840055

[10]J. W. Li and C. X. Du, Existence of positive periodic solutions for a generalized Nicholson’s blowflies model, J. Comput. Appl. Math. 221 (2008), 226-233. https://doi.org/10.1016/j.cam.2007.10.049

[11]F. Long, Positive almost periodic solutions for a generalized Nicholson’s blowflies model with a linear harvesting term, Nonlinear Anal. Real World Appl. 13 (2012), 686-693. https://doi.org/10.1016/j.nonrwa.2011.08.009

[12]F. Long and M. Q. Yang, Positive periodic solutions of delayed Nicholson’s blowflies model with a linear harvesting term, Electron J. Qual. Theo. 41 (2011), 1-11. https://doi.org/10.14232/ejqtde.2011.1.41

[13]G. R. Mullen and L. A. Durden, Medical and veterinary entomology, 3rd ed., London: Academic Press, 2019.

[14]L. A. Reilly, J. FavachoII and L. M. Garcez, Preliminary evidence that synanthropic flies contribute to the transmission of trachoma-causing Chlamydia trachomatis in Latin America, Cad. Saude. Publica. 23 (2007), 1682-1688. https://doi.org/10.1590/s0102-311x2007000700020

[15]S. H. Saker and S. Agarwal, Oscillation and global attractivity in a periodic Nicholson’s blowflies model, Math. Comput. Model. 35 (2002), 719-731. https://doi.org/10.1016/s0895-7177(02)00043-2

[16]A. Sanei-Dehkordi, M. Soleimani-Ahmadi, A. Cheshmposhan and K. Akbarzadeh, Biodiversity of medically important calyptratae flies (diptera:schizophora) in hospitals in the northern coastline of the persian gulf, Iran, J. Med. Entomol. 57 (2020), 766-771. http://doi.org/10.1093/jme/tjz222

[17]J. W. H. So and J. S. Yu, On the stability and uniform persistence of a discrete model of Nicholson’s blowflies, Indian J. Med. Res. 193 (1995), 233-244. https://doi.org/10.1006/jmaa.1995.1231

[18]R. Srinivasan, P. Jambulingam, K. Gunasekaran and P. Basker, Abundance & distribution of muscoid flies in tsunami-hit coastal villages of southern India during post-disaster management period, Indian J. Med. Res. 129 (2009), 658 664.

[19]J. Sugie, Y. Yan and M. Z. Qu, Effect of decimation on positive periodic solutions of discrete generalized Nicholson’s blowflies models with multiple time varying delays, Commun. Nonlinear. Sci. Numer. Simulat. 97 (2021), 15. https://doi.org/10.1016/j.cnsns.2021.105731

[20]J. K. Tomberlin, T. L. Crippen and A. M. Tarone et al., A review of bacterial interactions with blow flies (diptera:calliphoridae) of medical, veterinary, and forensic importance, Ann. Entomol. Soc. Am. 110 (2017), 19-36. https://doi.org/10.1093/aesa/saw086

[21]Y. Yang, R. Zhang, C. H. Jin and J. X. Yin, Existence of time periodic solutions for the Nicholson’s blowflies model with Newtonian diffusion, Math. Method. Appl. Sci. 33 (2010), 922-934. https://doi.org/10.1002/mma.1228

[22]W.-R. Zhao, C. M. Zhu and H. P. Zhu, On positive periodic solution for the delay Nicholson’s blowflies model with a harvesting term, Appl. Math. Model. 36 (2012), 3335-3340. https://doi.org/110.1016/j.apm.2011.10.011

Published
2025-01-10
How to Cite
Zhao, Y., Liu, S., Cao, Y., Ma, Q., & Yan, Y. (2025). MULTIPLICITY OF POSITIVE PERIODIC SOLUTIONS FOR A NICHOLSON-TYPE BLOWFLIES MODEL WITH NONLINEAR DECIMATION TERMS. Advances in Differential Equations and Control Processes, 28. Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2569
Section
Articles