IDENTIFICATION OF TWO PARAMETERS IN AN ELLIPTIC BOUNDARY VALUE PROBLEM

  • Abir Benyoucef Applied Mathematics Laboratory, Badji Mokhtar University, P.O.Box 12, Annaba 23000, Algeria
  • Leila Alem Applied Mathematics Laboratory, Badji Mokhtar University, P.O.Box 12, Annaba 23000, Algeria
  • Lahcène Chorfi Applied Mathematics Laboratory, Badji Mokhtar University, P.O.Box 12, Annaba 23000, Algeria
Article ID: 2553
Keywords: inverse problem; least squares method; Levenberg-Marquardt algorithm

Abstract

This paper concerns an inverse problem which consists in determining two coefficients b and c in the equation -b(x)u"+c(x)u'= f,x ∈]0,1[, knowing the solution function u and the right-hand side function f.The questions of uniqueness and stability are investigated. This problem is solved by using the nonlinear least squares method. We present some numerical examples to illustrate our algorithm.

References

[1]G. Chavent, Nonlinear Least Squares for Inverse Problems, Series Scientific Computation, Springer, 2009.

[2]H. W. Engl, K. Kunisch and A. Neubauer, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems, Inverse Problems 5 (1989), 523-540.

[3]H. W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, 1996.

[4]M. Guidici, A result concerning identifiability of the inverse problem of groundwater hydrology, Inverse Problems 5 (1989), L31-L36.

[5]M. Hanke, A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems, Inverse Problems 13 (1997), 79-95.

[6]M. Kern, Numerical Methods for Inverse Problems, John Wiley and Sons, 2016.

[7]I. Knowles, Parameter identification for elliptic problems, J. Comput. Appl. Math. 131 (2001), 175-194.

[8]J. J. Moré, The Levenberg-Marquardt algorithm: implementation and theory, G. A. Watson, ed., Lecture Notes in Mathematics 630: Numerical Analysis, Springer-Verlag, Berlin, 1978, pp. 105-116.

[9]A. Neubauer, Tikhonov regularisation for non-linear ill-posed problems: optimal convergence rates and finite dimensional approximation, Inverse Problems 5 (1989), 541-557.

[10]J. Zou, Numerical methods for elliptic inverse problems, Int. J. Comput. Math. 70 (1989), 211-232.

Published
2025-01-10
How to Cite
Benyoucef, A., Alem, L., & Chorfi, L. (2025). IDENTIFICATION OF TWO PARAMETERS IN AN ELLIPTIC BOUNDARY VALUE PROBLEM. Advances in Differential Equations and Control Processes, 27. Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2553
Section
Articles