A PROBLEM IN FRACTIONAL ORDER THERMO-VISCOELASTICITY THEORY FOR A POLYMER MICRO-ROD WITH AND WITHOUT ENERGY DISSIPATION

  • Mohamed H. Hendy Department of Mathematics Faculty of Science, Northern Border University Arar,Saudi Arabia; Department of Mathematics Faculty of Science, Al Arish University, Al Arish, Egypt
  • Magdy A. Ezzat Department of Mathematics Faculty of Education, Alexandria University, Egypt
  • Esraa M. Al-lobani Department of General Courses Applied College, Northern Border University, Rafha, Saudi Arabia
  • Ahmed S. Hassan Applied College, Northern Border University, Arar, Saudi Arabia
Article ID: 2453
Keywords: size-dependent thermo-viscoelastic coupling, generalized thermoelasticity with LS and without energy dissipation (GN-II), polymer micro-rod, fractional calculus

Abstract

A new study has been developed that considers the size-dependent interaction between viscoelastic deformation and thermal fields, incorporating the fractional heat conduction law with and without energy dissipation. The model is used for a particular one-dimensional problem involving a polymer micro-rod of arbitrary length experiencing three different types of thermal loading without the presence of any heat source. The study uses Laplace transforms and numerical inversion to examine how fractional order, nonlocal elasticity, and nonlocal thermal conduction impact thermal dispersion and thermo-viscoelastic response. Comparative numbers demonstrate the effects of various parameters. Findings demonstrate that nonlocal thermal and viscoelastic characteristics have a significant impact on all recorded field values, offering possible suggestions for the creation and assessment of thermal-mechanical attributes in nanoscale devices.

References

[1]J. L. Nowinski, Theory of Thermoelasticity with Applications, Sijthoff and Noordhoff International Publishers, 1978.

[2]M. A. Biot, Thermoelasticity and irreversible thermodynamics, Journal of Applied Physics 27(3) (1956), 240-253.

[3]C. Cattaneo, A form of heat conduction equation, which eliminates the paradox of instantaneous propagation, Comptes Rendus 247(3) (1958), 431-433.

[4]H. Lord and Y. Shulman, A generalized dynamical theory of thermoelasticity, Journal of the Mechanics and Physics of Solids 15(5) (1967), 299-309.

[5]W. Kaminski, Hyperbolic heat conduction equation for materials with a nonhomogeneous inner structure, ASME Journal Heat Transfer 112(3) (1990), 555-560.

[6]J. Ignaczak, Uniqueness in generalized thermoelasticity, J. Thermal Stresses 2(2) (1979), 171-175.

[7]H. H. Sherief and R. S. Dhalival, A uniqueness theorem and a variational principle for generalized thermoelasticity, J. Thermal Stresses 3(2) (1980), 223-230.

[8]M. A. Ezzat and A. S. El-Karamany, The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media, J. Thermal Stresses 25(6) (2002), 507-522.

[9]A. Sur, Memory responses in a three-dimensional thermo-viscoelastic medium, Waves Random and Complex Media 32(1) (2022), 137-154.

[10]A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity 31(3) (1993), 189-208.

[11]D. S. Chandrasekharaiah, A uniqueness theorem in the theory of thermoelasticity without energy dissipation, J. Thermal Stresses 19(3) (1996), 267-272.

[12]A. S. El-Karamany and M. A. Ezzat, Thermal shock problem in generalized thermoviscoelasticity under four theories, Internat. J. Engrg. Sci. 42(7) (2004), 649-671.

[13]P. Lata, Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium, Steel and Composite Structures, International Journal 27(4) (2018), 439-451.

[14]P. Lata and I. Kaur, Thermomechanical interactions in transversely isotropic magneto-thermoelastic solid with two temperatures and without energy dissipation, Steel and Composite Structures, International Journal 32(6) (2019), 779-793.

[15]M. A. Ezzat, Theory of fractional order in generalized thermoelectric MHD, Applied Mathematical Modelling 35(10) (2011), 4965-4978.

[16]M. A. Ezzat, Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties, J. Thermal Stresses 43(9) (2020), 1120-1137.

[17]G. Jumarie, Derivation and solutions of some fractional Black-Scholes equations in coarse-grained space and time, application to Merton’s optimal portfolio, Comput. Math. Appl. 59 (2010), 1142-1164.

[18]Y. J. Yu, X. G. Tian and J. L. Tian, Fractional order generalized electro-magneto-thermoelasticity, European Journal of Mech. A/Solids 42 (2013), 188-202.

[19]M. A. Ezzat and A. A. El-Bary, Unified GN model of electro-thermoelasticity theories with fractional order of heat transfer, Microsystem Technologies 24(12) (2018), 4965-4979.

[20]M. A. Ezzat, A. A. El-Bary and M. A. Fayik, Fractional Fourier law with three-phase lag of thermoelasticity, Mechanics of Advanced Materials and Structures 20(8) (2013), 593-602.

[21]S. I. El-Attar, M. H. Hendy and M. A. Ezzat, Magneto-thermoelasticity Green-Naghdi theory with memory-dependent derivative in the presence of a moving heat source, Int. J. Advanced and Applied Sciences 9(7) (2022), 33-41.

[22]M. M. Amin, M. H. Hendy and M. A. Ezzat, On the memory-dependent derivative electric-thermoelastic wave characteristics in the presence of a continuous line heat source, Int. J. Advanced and Applied Sciences 9(8) (2022), 1-8.

[23]X. J. Yang, General Fractional Derivatives: Theory, Methods and Applications, CRC Press, 2019.

[24]M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, Upper Saddle River, Prentice-Hall, NJ, Vol. 98, 1999, p. 103.

[25]M. A. Ezzat, Thermo-mechanical memory responses of biological viscoelastic tissue with variable thermal material properties, Int. J. Numerical Methods for Heat and Fluid Flow 31(1) (2020), 548-569.

[26]M. A. Ezzat, Bio-thermo-mechanics behavior in living viscoelastic tissue under the fractional dual-phase-lag theory, Archive of Applied Mechanics 91(9) (2021), 3903-3919.

[27]S. F. M. El Sherif, M. A. Ismail, A. A. El-Bary and H. M. Atef, Effect of magnetic field on thermos: viscoelastic cylinder subjected to a constant thermal shock, Int. J. Advanced and Applied Sciences 7(1) (2020), 117-124.

[28]X. Shi, M. L. Hassanzadeh-Aghdam and R. Ansari, Viscoelastic analysis of silica nanoparticle-polymer nanocomposites, Composites B 158 (2019), 169-178.

[29]K. Eom, H. S. Park, D. S. Yoon and T. Kwon, Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles, Physics Reports 503(4/5) (2011), 115-163.

[30]L. J. Currano, M. Yu and B. Balachandran, Latching in a MEMS shock sensor: modeling and experiments, Sensors and Actuators A: Physical 159(1) (2010), 41-50.

[31]A. Toril, M. Sasaki, K. Hane and S. Okuma, Adhesive force distribution on microstructures investigated by an atomic force microscope, Sensors and Actuators A: Physical 44(2) (1994), 153-158.

[32]A. E. Abouelregal and M. Marin, The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating, Mathematics 8(7) (2020), 1128.

[33]Q. Lyu, N. H. Zhang, C. Y. Zhang, J. Z. Wu and Y. C. Zhang, Effect of adsorbate viscoelasticity on dynamical responses of laminated microcantilever resonators, Composites Structures 250 (2020), 112553.

[34]M. Sobhy and A. M. Zenkour, The modified couple stress model for bending, of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations, Mechanics of Advanced Materials and Structures 279(7) (2020), 525-538.

[35]M. A. Attia and A. A. Abdel Rahman, On vibrations of functionally graded viscoelastic nanobeams with surface effects, Internat. J. Engrg. Sci. 127 (2018), 1-32.

[36]W. Yang and Z. Chen, Nonlocal dual-phase-lag heat conduction and the associated nonlocal thermoviscoelastic analysis, International Journal of Heat and Mass Transfer 156 (2020), 119752.

[37]J. D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1970.

[38]P. Lata and S. Singh, Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load, Steel and Composite Structures 33(1) (2019), 955-963.

[39]M. A. Ezzat, S. M. Ezzat and M. Y. Alkhrraz, State-space approach to nonlocal thermo-viscoelastic piezoelectric materials with fractional dual-phase lag heat transfer, Int. J. Numerical Methods for Heat and Fluid Flow 32(12) (2022), 3726-3750.

[40]A. A. Hassaballa, M. H. Hendy and M. A. Ezzat, A modified Green-Naghdi fractional-order model for analyzing thermoelectric semispace heated by a moving heat source, Mechanics of Time-Dependent Materials 28 (2024), 1815-1837.

[41]B. Gross, Mathematical Structure of the Theories of Viscoelasticity, Hermann, Paris, France, 1953.

[42]G. Honig and U. Hirdes, A method for the numerical inversion of the Laplace transform, J. Comput. Appl. Math. 10(1) (1984), 113-132.

[43]M. A. Ezzat, The relaxation effects of the volume properties of electrically conducting viscoelastic material, Mat. Sci. Eng. B 130(1/3) (2006), 11-23.

[44]H. H. Sherief and A. M. Abd El-Latief, Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity, Int. J. Mech. Sci. 74(9) (2013), 185-189.

[45]H. Guo, L. Yaning, C. Li and T. He, Structural dynamic responses of layer-by-layer viscoelastic sandwich nanocomposites subjected to time-varying symmetric thermal shock loadings based on nonlocal thermo-viscoelasticity theory, Microsys. Tech. 28(5) (2022), 1143-1165.

Published
2024-10-25
How to Cite
H. Hendy, M., A. Ezzat, M., M. Al-lobani, E., & S. Hassan, A. (2024). A PROBLEM IN FRACTIONAL ORDER THERMO-VISCOELASTICITY THEORY FOR A POLYMER MICRO-ROD WITH AND WITHOUT ENERGY DISSIPATION. Advances in Differential Equations and Control Processes, 31(4). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2453
Section
Articles