APPLICATION OF ADOMIAN DECOMPOSITION METHOD TO A GENERALIZED FRACTIONAL RICCATI DIFFERENTIAL EQUATION ($\psi$-FRDE)

  • Asrar Saleh Alsulami Department ofMathematics and Statistics, Faculty of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
  • Mariam Al-Mazmumy Department ofMathematics and Statistics, Faculty of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
  • Maryam Ahmed Alyami Department ofMathematics and Statistics, Faculty of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
  • Mona Alsulami Department ofMathematics and Statistics, Faculty of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
Article ID: 2451
18 Views , 2 PDF Downloads
Keywords: $\psi$-Caputo derivative; fractional nonlinear Riccati differential equation; Adomian decomposition method; semi-analytical method

Abstract

In this article, we generalize the fractional Riccati differential equations (FRDEs) by using a fractional derivative of a function with respect to another function ( $\psi$-Caputo derivative) and obtain $\psi$-FRDEs. Using the Adomian decomposition method (ADM) with Wazwaz modification, we solve the $\psi$-FRDEs semi-analytically. Comparing the solutions of the $\psi$-FRDEs with several functions of $\psi(x)$ and different values of fractional orders, we show that the presented method is efficient.

References

[1]J. H. He, Fractal calculus and its geometrical explanation, Results in Physics 10 (2018), 272-276. DOI: 10.1016/j.rinp.2018.06.011.

[2]H. Sun, Z. Li, Y. Zhang and W. Chen, Fractional and fractal derivative models for transient anomalous diffusion: Model comparison, Chaos, Solitons and Fractals 102 (2017), 346-353. DOI: 10.1016/j.chaos.2017.03.060.

[3]K. Hattaf, On the stability and numerical scheme of fractional differential equations with application to biology, Computation 10(6) (2022), 97.DOI: 10.3390/computation10060097.

[4]H. Sun, A. Chang, Y. Zhang and W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications, Fractional Calculus and Applied Analysis 22(1) (2019), 27-59. DOI: 10.1515/fca2019-0003.

[5]G. S. Teodoro, J. T. Machado and E. C. De Oliveira, A review of definitions of fractional derivatives and other operators, Journal of Computational Physics 388 (2019), 195-208. DOI: 10.1016/j.jcp.2019.03.008.

[6]C. Milici, G. Draganescu and J. T. Machado, Introduction to Fractional Differential Equations, 25, Springer, 2018.

[7]A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 204, Elsevier, 2006.DOI: 10.1016/S0304-0208(06)80001-0.

[8]P. Agarwal, Q. Al-Mdallal, Y. J. Cho and S. Jain, Fractional differential equations for the generalized Mittag-Leffler function, Advances in Difference Equations 2018 (2018), 1-8. DOI: 10.1186/s13662-018-1500-7.

[9]P. Agarwal, F. Qi, M. Chand and G. Singh, Some fractional differential equations involving generalized hypergeometric functions, Journal of Applied Analysis 25(1) (2019), 37-44. DOI: 10.1515/jaa-2019-0004.

[10]R. Almeida, A Caputo fractional derivative of a function with respect to another function, Communications in Nonlinear Science and Numerical Simulation 44 (2017), 460-481. DOI: 10.1016/j.cnsns.2016.09.006.

[11]O. K. Wanassi and D. F. Torres, An integral boundary fractional model to the world population growth, Chaos, Solitons and Fractals 168 (2023), 113151.DOI: 10.1016/j.chaos.2023.113151.

[12]R. Almeida, A. B. Malinowska and M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Mathematical Methods in the Applied Sciences 41(1) (2018), 336-352. DOI: 10.1002/mma.4617.

[13]R. Almeida, What is the best fractional derivative to fit data?. Applicable Analysis and Discrete Mathematics 11(2) (2017), 358-368.DOI: 10.48550/arXiv.1704.00609.

[14]M. S. Abdo, S. K. Panchal and A. M. Saeed, Fractional boundary value problem with -Caputo fractional derivative, Proceedings-Mathematical Sciences 129(5) (2019), 65.

[15]S. Bittanti, P. Colaneri and G. Guardabassi, Periodic solutions of periodic Riccati equations, IEEE Transactions on Automatic Control 29(7) (1984), 665-667.

[16]I. Lasiecka and R. Triggiani, (Eds.), Differential and Algebraic Riccati Equations With Application to Boundary/Point Control Problems: Continuous Theory and Approximation Theory, Berlin, Heidelberg: Springer Berlin Heidelberg, 1991.

[17]Y. Ozturk, A. Anapali, M. Gulsu and M. Sezer, A collocation method for solving fractional Riccati differential equation, Journal of Applied Mathematics 2013(1) (2013), 598083.

[18]M. Merdan, On the solutions fractional Riccati differential equation with modified Riemann-Liouville derivative, International Journal of Differential Equations 2012(1) (2012), 346089.

[19]X. Liu, Kamran and Y. Yao, Numerical approximation of Riccati fractional differential equation in the sense of Caputo-type fractional derivative, Journal of Mathematics 2020 (2020), 1-12.

[20]M. M. Khader, N. H. Sweilam and B. N. Kharrat, Numerical simulation for solving fractional Riccati and logistic differential equations as a difference equation, Applications and Applied Mathematics: An International Journal (AAM) 15(1) (2020), 37.

[21]B. S. Kashkari and M. I. Syam, Fractional-order Legendre operational matrix of fractional integration for solving the Riccati equation with fractional order, Applied Mathematics and Computation 290 (2016), 281-291.

[22]Z. Odibat and S. Momani, Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos, Solitons and Fractals 36(1) (2008), 167-174.

[23]S. Yuzbasi, Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials, Applied Mathematics and Computation 219(11) (2013), 6328-6343.

[24]H. S. Patel and R. Meher, Analytical investigation of Jeffery-Hamel flow by modified Adomian decomposition method, Ain Shams Engineering Journal 9(4) (2018), 599-606.

[25]H. Thabet and S. Kendre, New modification of Adomian decomposition method for solving a system of nonlinear fractional partial differential equations, Int. J. Adv. Appl. Math. Mech. 6(3) (2019), 1-13.

[26]S. Masood, Hajira, H. Khan, R. Shah, S. Mustafa, Q. Khan, M. Arif, F. Tchier and G. Singh, A new modified technique of Adomian decomposition method for fractional diffusion equations with initial-boundary conditions, Journal of Function Spaces 2022(1) (2022),6890517.

[27]Y. Cherruault, Convergence of Adomian’s method, Kybernetes 18(2) (1989), 31 38.

[28]Y. Cherruault and G. Adomian, Decomposition methods: a new proof of convergence, Mathematical and Computer Modelling 18(12) (1993), 103-106.

[29]N. Himoun, K. Abbaoui and Y. Cherruault, New results of convergence of Adomian’s method, Kybernetes 28(4) (1999), 423-429.

[30]K. Abbaoui and Y. Cherruault, Convergence of Adomian’s method applied to differential equations, Computers and Mathematics with Applications 28(5) (1994), 103-109.

[31]A. M. Wazwaz and S. M. El-Sayed, A new modification of the Adomian decomposition method for linear and nonlinear operators, Applied Mathematics and Computation 122(3) (2001), 393-405.

[32]A. Ali and T. Minamoto, A new numerical technique for solving -fractional Riccati differential equations, Journal of Applied Analysis and Computation 13(2) (2023), 1027-1043. DOI: 10.11948/20220318.

[33]F. M. Alharbi, A. M. Zidan, M. Naeem, R. Shah and K. Nonlaopon, Numerical investigation of fractional-order differential equations via -Haar-Wavelet method, Journal of Function Spaces 2021(1) (2021), 3084110.

Published
2024-09-25
How to Cite
Saleh Alsulami, A., Al-Mazmumy, M., Ahmed Alyami, M., & Alsulami, M. (2024). APPLICATION OF ADOMIAN DECOMPOSITION METHOD TO A GENERALIZED FRACTIONAL RICCATI DIFFERENTIAL EQUATION ($\psi$-FRDE). Advances in Differential Equations and Control Processes, 31(4). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2451
Section
Articles