HOMOTOPY PERTURBATION METHOD FOR SOLVING A NONLINEAR SYSTEM FOR AN EPIDEMIC

  • Nada A. M. Alshomrani Department of Mathematics Faculty of Science University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
  • Weam G. Alharbi Department of Mathematics Faculty of Science University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
  • Ibtisam M. A. Alanazi Department of Mathematics Faculty of Science University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
  • Lujain S. M. Alyasi Department of Mathematics Faculty of Science University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
  • Ghadi N. M. Alrefaei Department of Mathematics Faculty of Science University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
  • Seada A. Al’amri Department of Mathematics Faculty of Science University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
  • Asmaa H. Q. Alanzi Department of Mathematics Faculty of Science University of Tabuk, P.O. Box 741, Tabuk 71491, Saudi Arabia
Article ID: 2442
Keywords: ordinary differential equation, homotopy perturbation method, initial value problem, series solution

Abstract

This paper solves the SIR-epidemic model utilizing the homotopy perturbation method (HPM). The HPM is applied in a different way in contrast to the HPM in the literature. The current approach uses a new canonical form for the system of the SIR-epidemic. The analytic solution is obtained and compared with the published one, in addition, to the Runge-Kutta numerical method. The results show better accuracy than the corresponding ones.

References

[1]J. Li and X. Zou, Modeling spatial spread of infectious diseases with a spatially continuous domain, Bull. Math. Biol. 71(8) (2009), 20-48.

[2]C. I. Siettos and L. Russo, Mathematical modeling of infectious disease dynamics, Virulence 4 (2013), 295-306.

[3]S. M. Jenness, S. M. Goodreau and M. Morris, Epimodel: an R package for mathematical modeling of infectious disease over networks, Journal of Statistical Software 84 (2018), 1-56.

[4]A. S. Shaikh, I. N. Shaikh and K. S. Nisar, A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control, Adv. Difference Equ. 373 (2020), 1-19.

[5]J. G. De Abajo, Simple mathematics on COVID-19 expansion, MedRxiv, 2020.

[6]K. A. Gepreel, M. S. Mohamed, H. Alotaibi and A. M. S. Mahdy, Dynamical behaviors of nonlinear coronavirus (COVID-19) model with numerical studies, Computers, Materials and Continua 67(1) (2021), 675-686.DOI: 10.32604/cmc.2021.012200.

[7]K. Ghosh and A. K. Ghosh, Study of COVID-19 epidemiological evolution in India with a multiwave SIR model, Nonlinear Dynam. 312(109) (2022), 47-55. https://doi.org/10.1007/s11071-022-07471-x.

[8]W. Alharbi, A. Shater, A. Ebaid, C. Cattani and M. Areshi, Communicable disease model in view of fractional calculus, AIMS Math. 8 (2023), 10033-10048.

[9]A. Ebaid, Approximate analytical solution of a nonlinear boundary value problem and its application in fluid mechanics, Z. Naturforschung A 66 (2011), 423-426.

[10]A. Ebaid, A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method, J. Comput. Appl. Math. 235 (2011), 1914-1924.

[11]E. H. Ali, A. Ebaid and R. Rach, Advances in the Adomian decomposition method for solving two-point nonlinear boundary value problems with Neumann boundary conditions, Comput. Math. Appl. 63 (2012), 1056-1065.

[12]A. Ebaid, C. Cattani, A. S. Al Juhani1 and E. R. El-Zahar, A novel exact solution for the fractional Ambartsumian equation, Adv. Difference Equ. (2021), 2021:88. https://doi.org/10.1186/s13662-021-03235-w.

[13]A. Ebaid, M. D. Aljoufi and A.-M. Wazwaz, An advanced study on the solution of nanofluid flow problems via Adomian’s method, Appl. Math. Lett. 46 (2015), 117-122.

[14]K. Abbaoui and Y. Cherruault, Convergence of Adomian’s method applied to nonlinear equations, Math. Comput. Model. 20 (1994), 69-73.

[15]A. Alshaery and A. Ebaid, Accurate analytical periodic solution of the elliptical Kepler equation using the Adomian decomposition method, Acta Astronautica 140 (2017), 27-33.

[16]H. O. Bakodah and A. Ebaid, Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method, Mathematics 6 (2018), 331.

[17]A. Ebaid, A. Al-Enazi, B. Z. Albalawi and M. D. Aljoufi, Accurate approximate solution of ambartsumian delay differential equation via decomposition method, Math. Comput. Appl. 24(1) (2019), 7.

[18]A. H. S. Alenazy, A. Ebaid, E. A. Algehyne and H. K. Al-Jeaid, Advanced study on the delay differential equation Mathematics 10(22) (2022), 4302. https://doi.org/10.3390/math10224302.

[19]A. Ebaid, Remarks on the homotopy perturbation method for the peristaltic flow of Jeffrey fluid with nano-particles in an asymmetric channel, Comput. Math. Appl. 68(3) (2014), 77-85.

[20]A. Ebaid, A. F. Aljohani and E. H. Aly, Homotopy perturbation method for peristaltic motion of gold-blood nanofluid with heat source, Internat. J. Numer. Methods Heat Fluid Flow 30(6) (2020), 3121-3138.https://doi.org/10.1108/HFF-11-2018-0655.

[21]Ebrahem A. Algehyne, Essam R. El-Zahar, Fahad M. Alharbi and Abdelhalim Ebaid, Development of analytical solution for a generalized Ambartsumian equation, AIMS Math. 5(1) (2020), 249-258. Doi: 10.3934/math.2020016.

[22]A. B. Albidah, N. E. Kanaan, A. Ebaid and H. K. Al-Jeaid, Exact and numerical analysis of the pantograph delay differential equation via the homotopy perturbation method, Mathematics 11 (2023), 944.https://doi.org/10.3390/math11040944.

Published
2024-06-11
How to Cite
A. M. Alshomrani, N., G. Alharbi, W., M. A. Alanazi, I., S. M. Alyasi, L., N. M. Alrefaei, G., A. Al’amri, S., & H. Q. Alanzi, A. (2024). HOMOTOPY PERTURBATION METHOD FOR SOLVING A NONLINEAR SYSTEM FOR AN EPIDEMIC. Advances in Differential Equations and Control Processes, 31(3). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2442
Section
Articles