ANALYZING AND SIMULATING THE OSCILLATION IN MULTIDIMENSIONAL ODD COMPETITIVE SYSTEMS

  • Yury I. Brodsky Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences 40 Vavilova str., Moscow 119333, Russia
Article ID: 2441
Keywords: population models, multidimensional competition, oscillation, modeling, simulation

Abstract

We consider a multidimensional odd competitive model, which is a generalization to a multidimensional (more than two dimensions) case of both the P. Verhulst logistic model and the A. Lotka and V. Volterra competition model.

References

[1]P. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance mathématique et physique 10 (1838), 113-121. Retrieved 06 December 2023.

[2]V. Volterra, Lecóns sur la théorie mathematique de la lutte pour la vie, Gauthier-Villars, Paris, 1931, p. 214.

[3]Y. I. Brodsky, Oscillations in multidimensional odd competitive systems, Modeling, Decomposition and Optimization of Complex Dynamic Processes 25(1) (2010), 7-24 (in Russian).

[4]R. Gray, Toeplitz and circulant matrices: a review, Foundations and Trends, 2006, p. 100. DOI:10.1561/0100000006.

[5]G. M. Fikhtengol’ts, The Fundamentals of Mathematical Analysis, Vol. 2, Pergamon, 1965, p. 540.

[6]Y. I. Brodsky, Tolerance, Intolerance, Identity: Simple math models of cultures’ interaction, LAP LAMBERT Academic Publishing, 2011, p. 68.

[7]I. Grigoryev, AnyLogic 7 in Three Days, 2 ed., AnyLogic, 2015, p. 256.

[8]V. A. Bobrov and Yu. I. Brodsky, Simulating the soft power effect in two- dimensional models of A. Lotka – V. Volterra, WSEAS Transactions on Computers 22 (2023), 171-176. DOI:10.37394/23205.2023.22.20.

[9]V. A. Bobrov and Yu. I. Brodsky, Modeling of double standards and soft power in cellular automata competition systems, E3S Web of Conf. 405 (2023), 02016. DOI:10.1051/e3sconf/202340502016.

Published
2024-05-28
How to Cite
I. Brodsky, Y. (2024). ANALYZING AND SIMULATING THE OSCILLATION IN MULTIDIMENSIONAL ODD COMPETITIVE SYSTEMS. Advances in Differential Equations and Control Processes, 31(3). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2441
Section
Articles