HOMOTOPY PERTURBATION METHOD TO SOLVE DUFFING-VAN DER POL EQUATION

  • BAGAYOGO Moussa Centre Universitaire deKaya, Université Joseph KI-ZERBO, Burkina Faso
  • MINOUNGOU Youssouf Ecole Normale Supérieure(ENS), Burkina Faso
  • NEBIE Abdoul Wassiha Université JosephKI-ZERBO, Burkina Faso
  • PARE Youssouf Université JosephKI-ZERBO, Burkina Faso
Article ID: 2439
Keywords: Duffing-Van der Pol equation, homotopy perturbation method, regular perturbation method

Abstract

In this paper, the Homotopy Perturbation Method (HPM) and the Regular Perturbation Method (RPM) are used to study Duffing-Van der Pol equation. Then we compare the solutions obtained by these two methods.

References

[1]A. Belendez, A. Hernandez, T. Belendez, E. Fernandez, M. L. Alvarez and C. Neipp, Application of He’s homotopy perturbation method to the Duffing-Harmonic oscillator, International Journal of Nonlinear Sciences and Numerical Simulation 8(1) (2007), 79-88.

[2]E. M. de Jager and Jiang Furu, The Theory of Singular Perturbations, North-Holland, 1996.

[3]Gabriel BISSANGA, Application of Adomian decomposition method to solving the Duffing equation, Comparison with perturbation method, Proceedings of the Fourth International Workshop on Contemporary Problems in Mathematical Physics, Cotonou Benin, November 2005. World Scientific Publishing Co. Pte. Ltd., 2006.

[4]J. H. He, Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering 178 (1999), 257-262.

[5]J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Applied Mathematics and Computation 135 (2003), 73-79.

[6]J.-H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Applied Mathematics and Computation 151(1) (2004), 287-292.

[7]A. Kimiaeifar, A. R. Saidi, G. H. Bagheri and M. Rahimpour, Analytical solution for Van der Pol-Duffing oscillators, Chaos Solitons Fractals 42(5) (2009), 2660-2666.

[8]Rodrigo D. Euzebio and Jaume Llibre, Sufficient conditions for the existence of periodic solutions of the extended Duffing-Van der Pol oscillator, International Journal of Computer Mathematics 93(8) (2016), 1358-1382.

[9]H. Mirgolbabaee, S. T. Ledari and D. D. Gaji, New approach method for solving Duffing-type nonlinear oscillator, Alexandria Engineering Journal 55(2) (2016), 1695-1702.

[10]M. Momeni, N. Jamshidi, A. Barari and D. D. Ganji, Application of He’s energy balance method to Duffing harmonic oscillators, International Journal of Computer Mathematics 88(1) (2011), 135-144.

[11]Aiyong Chen and Guirong Jiang, Periodic solution of the Duffing-Van der Pol oscillator by homotopy perturbation method, International Journal of Computer Mathematics 87(12) (2010), 2688-2696.

[12]J. Kyziol and A. Okninski, The Duffing-Van der Pol equation: Metamorphoses of resonance curves, Nonlinear Dynamics and Systems Theory 15 (2015), 25-31.

Published
2024-05-15
How to Cite
Moussa, B., Youssouf, M., Abdoul Wassiha, N., & Youssouf, P. (2024). HOMOTOPY PERTURBATION METHOD TO SOLVE DUFFING-VAN DER POL EQUATION. Advances in Differential Equations and Control Processes, 31(3). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2439
Section
Articles