ON 3D COMPRESSIBLE PRIMITIVE EQUATIONS APPROXIMATION OF ANISOTROPIC NAVIER-STOKES EQUATIONS: RIGOROUS JUSTIFICATION

  • Jules Ouya Laboratoire de Mathématiques; Informatique et Applications (L@MIA), Université Norbert ZONGO, BP 376 Koudougou, Burkina Faso
  • Arouna Ouedraogo Laboratoire de Mathématiques; Informatique et Applications (L@MIA), Université Norbert ZONGO, BP 376 Koudougou, Burkina Faso
Article ID: 2430
Keywords: anisotropic Navier-Stokes equations; aspect ratio limit; compressible primitive equations

Abstract

In this paper, we obtain the 3D compressible primitive equations approximation without gravity by taking the small aspect ratio limit to the Navier-Stokes equations in the isothermal case with gravity. The aspect ratio (the ratio of the depth to horizontal width) is a geometrical constraint in general large scale geophysical motions that the vertical scale is significantly smaller than horizontal. We use the versatile relative entropy inequality to prove rigorously the limit from the compressible Navier-Stokes equations to the compressible primitive equations. In addition to the presence of gravity, we consider that the viscosity of the fluid depends on its density and that it is submitted to a quadratic friction force.

References

[1]R. Andrášik, V. Mácha and R. Vodák, Relative energy inequality and weak-strong uniqueness for an isothermal non-Newtonian compressible fluid, Glasnik Matematitički 58(78) (2023), 85-99.

[2]P. Azérad and F. Guillén, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal. 33 (2001), 847-859.

[3]P. Bella, E. Feireisl and A. Novotný, Dimension reduction for compressible viscous fluids, Acta Appl. Math. 134 (2014), 111-121.

[4]D. Bresch, F. Guillén-González, N. Masmoudi and M. A. Rodríguez-Bellido, On the uniqueness of weak solutions of the two-dimensional primitive equations, Differential Integral Equations 16 (2003), 77-94.

[5]D. Bresch, A. Kazhikhov and J. Lemoine, On the two-dimensional hydrostatic Navier-Stokes equations, SIAM J. Math. Anal. 36 (2004/05), 796-814.

[6]D. Bresch, J. Lemoine and J. Simon, A vertical diffusion model for lakes, SIAM J. Math. Anal. 30 (1999), 603-622.

[7]K. Bryan, A numerical method for the study of the circulation of the world ocean, J. Comp. Phys. 4 (1969), 347-376.

[8]C. S. Cao, J. K. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity, Arch. Ration. Mech. Anal. 214 (2014), 35-76.

[9]C. S. Cao, J. K. Li and E. S. Titi, Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion, Comm. Pure Appl. Math. 69 (2016), 1492-1531.

[10]C. S. Cao, J. K. Li and E. S. Titi, Strong solutions to the 3D primitive equations with only horizontal dissipation: near H1 initial data, J. Funct. Anal. 272 (2017), 4606-4641.

[11]C. M. Dafermos, The second law of thermodynamics and stability, Arch. Rational Mech. Anal. 70 (1979), 167-179.

[12]M. Ersoy, T. Ngom and M. Sy, Compressible primitive equations: formal derivation and stability of weak solutions, Nonlinearity 24 (2011), 79-96.

[13]M. Ersoy and T. Ngom, Existence of a global weak solution to one model of compressible primitive equations, C. R. Math. Acad. Sci. Paris 350 (2012), 379-382.

[14]M. Esteves, X. Faucher, S. Galle and M. Vauclin, Overland flow and infiltration modeling for small plots during unsteady rain: numerical results versus observed values, J. Hydrol. 228 (2000), 265-282.

[15]E. Feireisl, Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2004.

[16]E. Feireisl, J. B. Jin and A. Novotný, Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech. 14 (2012), 717-730.

[17]E. Feireisl and A. Novotný, Singular limits in thermodynamics of viscous fluids, Advances in Mathematical Fluid Mechanics, Birkhäuser, Basel, 2009.

[18]C. Gandolfi and F. Savi, A mathematical model for the coupled simulation of surface runoff and infiltration, Journal of Agricultural Engineering Research 75 (2000), 49-55.

[19]H. Gao, S. Necasova and T. Tang, On the hydrostatic approximation of compressible anisotropic Navier-Stokes equations - rigorous justification, J. Math. Fluid. Mech. 24 (2022), 86.

[20]B. V. Gatapov and A. V. Kazhikhov, Existence of a global solution of a model problem of atmospheric dynamics, Siberian Math. J. 46 (2005), 805-812.

[21]P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech. 13 (2011), 137-146.

[22]B. L. Guo and D. W. Huang, Existence of the universal attractor for the 3-D viscous primitive equations of large-scale moist atmosphere, J. Differential Equations 251 (2011), 457-491.

[23]B. L. Guo, D. W. Huang and W. Wang, Diffusion limit of 3D primitive equations of the large-scale ocean under fast oscillating random force, J. Differential Equations 259 (2015), 2388-2407.

[24]O. Kreml, S. Necasova and T. Piasecki, Local existence of strong solutions and weak-strong uniqueness for the compressible Navier-Stokes system on moving domains, Proc. Roy. Soc. Edinburgh Sect. A 150(5) (2020), 2255-2300. DOI: 10.1017/prm.2018.165.

[25]N. Ju, The global attractor for the solutions to the 3d viscous primitive equations, Discrete Contin. Dyn. Syst. 17 (2007), 159-179.

[26]J. K. Li and E. S. Titi, The primitive equations as the small aspect ratio limit of the Navier-Stokes equations: rigorous justification of the hydrostatic approximation, J. Math. Pures Appl. 124 (2019), 30-58.

[27]J. L. Lions, R. Temam and S. H. Wang, On the equations of the large-scale ocean, Nonlinearity 5 (1992), 1007-1053.

[28]J. L. Lions, R. Temam and S. H. Wang, New formulations of the primitive equations of atmosphere and applications, Nonlinearity 5 (1992), 237-288.

[29]J. L. Lions, R. Temam and S. H. Wang, Mathematical theory for the coupled atmosphere-ocean models, (CAO III), J. Math. Pures Appl. (9) 74 (1995), 105-163.

[30]J. L. Lions, R. Temam and S. H. Wang, On mathematical problems for the primitive equations of the ocean: the mesoscale midlatitude case, Nonlinear Anal. 40 (2000), 439-482.

[31]X. Liu and E. S. Titi, Local well-posedness of strong solutions to the three- dimensional compressible primitive equations, Arch. Rational Mech. Anal. 241 (2021), 729-764.

[32]X. Liu and E. S. Titi, Global existence of weak solutions to the compressible primitive equations of atmospheric dynamics with degenerate viscosities, SIAM J. Math. Anal. 51 (2019), 1913-1964.

[33]X. Liu and E. S. Titi, Zero Mach number limit of the compressible primitive equations Part I: well-prepared initial data, Arch. Ration. Mech. Anal. 238 (2020), 705-747.

[34]D. Maltese and A. Novotny, Compressible Navier-Stokes equations on thin domains, J. Math. Fluid Mech. 16 (2014), 571-594.

[35]L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 13 (1959), 115-162.

[36]J. Pedlosky, Geophysical Fluid Dynamics, 2nd ed., Springer-Verlag, New York, 1987.

[37]T. Tang and H. J. Gao, On the stability of weak solution for compressible primitive equations, Acta Appl. Math. 140 (2015), 133-145.

[38]R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, Handbook of Mathematical Fluid Dynamics, 2004.

[39]F. C. Wang, C. S. Dou and Q. S. Jiu, Global weak solutions to 3D compressible primitive equations with density dependent viscosity, J. Math. Phys. 61(2) (2020), 021507, 33 pp.

[40]S. H. Wang and P. Yang, Remarks on the Rayleigh-Benard convection on spherical shells, J. Math. Fluid Mech. 15 (2013), 537-552.

Published
2024-02-28
How to Cite
Ouya, J., & Ouedraogo, A. (2024). ON 3D COMPRESSIBLE PRIMITIVE EQUATIONS APPROXIMATION OF ANISOTROPIC NAVIER-STOKES EQUATIONS: RIGOROUS JUSTIFICATION. Advances in Differential Equations and Control Processes, 31(1). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2430
Section
Articles