HIGHER FRACTIONAL ORDER $p$-LAPLACIAN BOUNDARY VALUE PROBLEM AT RESONANCE ON AN UNBOUNDED DOMAIN

  • Ezekiel K. Ojo Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria
  • Samuel A. Iyase Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria
  • Timothy A. Anake Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria
Article ID: 2428
Keywords: Banach spaces; coincidence degree theory; unbounded domain; resonance, p-Laplacian; two-dimensional kernel

Abstract

In this work, we use the Ge and Ren extension of Mawhin's coincidence degree theory to investigate the solvability of the $p$-Laplacian fractional order boundary value problem of the form $$ \begin{aligned} & \left(\phi_p\left(D_{0+}^\alpha x(t)\right)\right)^{\prime} \\ = & f\left(t, x(t), D_{0+}^{\alpha-3} x(t), D_{0+}^{\alpha-2} x(t), D_{0+}^{\alpha-1} x(t), D_{0+}^\alpha x(t)\right), \quad t \in(0,+\infty), \\ & x(0)=0=D_{0+}^{\alpha-3} x(0), \quad D_{0+}^{\alpha-2} x(0)=\int_0^1 D_{0+}^{\alpha-2} x(t) d A(t), \\ & \lim _{t \rightarrow+\infty} D_{0+}^{\alpha-1} x(t)=\sum_{i=1}^m \mu_i D_{0+}^{\alpha-1} x\left(\xi_i\right), \quad D_{0+}^\alpha x(\infty)=0, \end{aligned} $$ where $3<\alpha \leq 4$. The conditions $\int_0^1 d A(t)=1, \quad \int_0^1 t d A(t)=0$, $\sum_{i=1}^m \mu_i=1$ and $\sum_{i=1}^m \mu_i \xi_i^{-1}=0$ are critical for resonance.

References

[1]R. P. Agarwal, M. Benchohra, S. Hamani and S. Pinelas, Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half-line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18(2) (2011), 235-244.

[2]X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of p-Laplacian with fractional derivative, Bound. Value Probl. 2017(1) (2017), 1-15.

[3]W. G. Ge and J. L. Ren, An extension of Mawhin’s continuation theorem and its application to boundary value problems with a p-Laplacian, Nonlinear Analysis 58 (2009), 477-488.

[4]A. Guezane-Lakoud and A. Kilicman, On resonant mixed Caputo fractional differential equations, Journal of Boundary Value Problems 2020(168) (2020), 1-13. http://doi.org/10.1186/s13661-020-01465-7.

[5]S. A. Iyase and S. A. Bishop, On the solvability of a third-order p-Laplacian m point boundary value problem at resonance on the half-line with two dimensional kernel, International Journal of Advances in Mathematical Science 15(3) (2021), 343-351.

[6]O. F. Imaga and S. A. Iyase, On a fractional order p-Laplacian boundary value problem at resonance on the half-line with two dimensional kernel, Adv. Difference Equ. 2021(252) (2021), 1-14. http://doi.org/10.1186/s13662-021-03406-9.

[7]S. A. Iyase and K. S. Eke, Higher-order p-Laplacian boundary value problem at resonance on an unbounded domain, Heliyon 6(9) (2020), e04826.

[8]S. A. Iyase and O. F. Imaga, Higher order boundary value problems with integral boundary conditions at resonance on the half-line, J. Nigerian Math. Soc. 38(2) (2019), 165-183.

[9]S. A. Iyase and O. F. Imaga, Higher-order p-Laplacian boundary value problems with resonance of dimension two on the half-line, Journal of Boundary Value Problems 2022(47) (2022), 1-14. https://doi.org.1186.s13661-022-01629-7.

[10]N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differential Equations 2010(135) (2010), 1-10. http://ejde.math.txstate.edu.

[11]F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal. 15(4)(2012), 712-717. https://doi.org/10.2478/s13540-012-0048-6.

[12]E. K. Ojo, S. A. Iyase and T. A. Anake, On a resonant fractional order multipoint and Riemann-Stieltjes integral boundary value problems on the half-line with two- dimensional kernel, Engineering Letters 131(1) (2023), 143-153.

[13]J. Tan and M. Li, Solutions of fractional differential equations with p-Laplacian operator in Banach spaces, Journal of Boundary Value Problem 2018(15) (2018), 1-13. https://doi.org/10.1186/s1366-018-0930-1.

[14]N. Xu, W. Liu and L. Xiao, The existence of solutions for nonlinear fractional multi-point boundary value problems at resonance, Journal of Mathematics Industry 2012(65) (2012), 1-14.

Published
2024-02-22
How to Cite
K. Ojo, E., A. Iyase, S., & A. Anake, T. (2024). HIGHER FRACTIONAL ORDER $p$-LAPLACIAN BOUNDARY VALUE PROBLEM AT RESONANCE ON AN UNBOUNDED DOMAIN. Advances in Differential Equations and Control Processes, 31(1). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2428
Section
Articles