HIGHER FRACTIONAL ORDER $p$-LAPLACIAN BOUNDARY VALUE PROBLEM AT RESONANCE ON AN UNBOUNDED DOMAIN
Abstract
In this work, we use the Ge and Ren extension of Mawhin's coincidence degree theory to investigate the solvability of the $p$-Laplacian fractional order boundary value problem of the form $$ \begin{aligned} & \left(\phi_p\left(D_{0+}^\alpha x(t)\right)\right)^{\prime} \\ = & f\left(t, x(t), D_{0+}^{\alpha-3} x(t), D_{0+}^{\alpha-2} x(t), D_{0+}^{\alpha-1} x(t), D_{0+}^\alpha x(t)\right), \quad t \in(0,+\infty), \\ & x(0)=0=D_{0+}^{\alpha-3} x(0), \quad D_{0+}^{\alpha-2} x(0)=\int_0^1 D_{0+}^{\alpha-2} x(t) d A(t), \\ & \lim _{t \rightarrow+\infty} D_{0+}^{\alpha-1} x(t)=\sum_{i=1}^m \mu_i D_{0+}^{\alpha-1} x\left(\xi_i\right), \quad D_{0+}^\alpha x(\infty)=0, \end{aligned} $$ where $3<\alpha \leq 4$. The conditions $\int_0^1 d A(t)=1, \quad \int_0^1 t d A(t)=0$, $\sum_{i=1}^m \mu_i=1$ and $\sum_{i=1}^m \mu_i \xi_i^{-1}=0$ are critical for resonance.
References
[1]R. P. Agarwal, M. Benchohra, S. Hamani and S. Pinelas, Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half-line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 18(2) (2011), 235-244.
[2]X. Dong, Z. Bai and S. Zhang, Positive solutions to boundary value problems of p-Laplacian with fractional derivative, Bound. Value Probl. 2017(1) (2017), 1-15.
[3]W. G. Ge and J. L. Ren, An extension of Mawhin’s continuation theorem and its application to boundary value problems with a p-Laplacian, Nonlinear Analysis 58 (2009), 477-488.
[4]A. Guezane-Lakoud and A. Kilicman, On resonant mixed Caputo fractional differential equations, Journal of Boundary Value Problems 2020(168) (2020), 1-13. http://doi.org/10.1186/s13661-020-01465-7.
[5]S. A. Iyase and S. A. Bishop, On the solvability of a third-order p-Laplacian m point boundary value problem at resonance on the half-line with two dimensional kernel, International Journal of Advances in Mathematical Science 15(3) (2021), 343-351.
[6]O. F. Imaga and S. A. Iyase, On a fractional order p-Laplacian boundary value problem at resonance on the half-line with two dimensional kernel, Adv. Difference Equ. 2021(252) (2021), 1-14. http://doi.org/10.1186/s13662-021-03406-9.
[7]S. A. Iyase and K. S. Eke, Higher-order p-Laplacian boundary value problem at resonance on an unbounded domain, Heliyon 6(9) (2020), e04826.
[8]S. A. Iyase and O. F. Imaga, Higher order boundary value problems with integral boundary conditions at resonance on the half-line, J. Nigerian Math. Soc. 38(2) (2019), 165-183.
[9]S. A. Iyase and O. F. Imaga, Higher-order p-Laplacian boundary value problems with resonance of dimension two on the half-line, Journal of Boundary Value Problems 2022(47) (2022), 1-14. https://doi.org.1186.s13661-022-01629-7.
[10]N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differential Equations 2010(135) (2010), 1-10. http://ejde.math.txstate.edu.
[11]F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal. 15(4)(2012), 712-717. https://doi.org/10.2478/s13540-012-0048-6.
[12]E. K. Ojo, S. A. Iyase and T. A. Anake, On a resonant fractional order multipoint and Riemann-Stieltjes integral boundary value problems on the half-line with two- dimensional kernel, Engineering Letters 131(1) (2023), 143-153.
[13]J. Tan and M. Li, Solutions of fractional differential equations with p-Laplacian operator in Banach spaces, Journal of Boundary Value Problem 2018(15) (2018), 1-13. https://doi.org/10.1186/s1366-018-0930-1.
[14]N. Xu, W. Liu and L. Xiao, The existence of solutions for nonlinear fractional multi-point boundary value problems at resonance, Journal of Mathematics Industry 2012(65) (2012), 1-14.