A STOCHASTIC MODEL FOR THE SPREAD OF HUMAN PLASMODIA
Abstract
We use stochastic differential equations (SDEs) to model the spread of the malaria parasite through a compartmental model of the type $\left(S_h L_h I_h R_h S_h-I_v\right)$. Considering the transmission rates $\bar{\beta}(t)$ and $\bar{v}(t)$ by introducing standard Brownian motion in order to render the ordinary differential equation into SDE, we obtain the existence and uniqueness of the solution.
References
[1]Ronald Ross, The Prevention of Malaria, John Murray, London, 1911.
[2]David L. Smith, Katherine E. Battle, Simon I. Hay, Christopher M. Barker, Thomas W. Scott and F. Ellis McKenzie, Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens, PLoS Pathogens 8(4) (2012), e1002588.
[3]Rachel Waema Mbogo, Livingstone S. Luboobi and John W. Odhiambo, A stochastic model for malaria transmission dynamics, J. Appl. Math. 2018 (2018), Art. ID 2439520, 13 pp.
[4]Reuben I. Gweryina and Anande R. Kimbir, Dynamical behavior of a malaria relapse model with insecticide treated nets (itns) as protection measure, Applications and Applied Mathematics: An International Journal (AAM) 15(1) (2020), 9.
[5]Yongli Cai, Yun Kang and Weiming Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput. 305 (2017), 221-240.
[6]Xiaomei Ren and Tiansi Zhang, Global analysis of an SEIR epidemic model with a ratio dependent nonlinear incidence rate, Journal of Applied Mathematics and Physics 5(12) (2017), 2311-2319.
[7]Derdei Bichara, Etude de modèles épidémiologiques: stabilité, observation et estimation de paramètres, PhD thesis, Université de Lorraine, 2013.
[8]Pauline van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180(1-2) (2002), 29-48.
[9]Julie Mintsa Mi Ondo Mintsa Mi Ondo, Les aspects spatiaux dans la modélisation en épidémiologie, PhD thesis, Université de Grenoble, 2012.
[10]Jacek Banasiak, Rachid Ouifki and Woldegebriel Assefa Woldegerima, Some mathematical tools for modelling malaria: a subjective survey, Biomath 10 (2021), 1-19.
[11]Francis Mugabi, Kevin J. Duffy, Joseph Y. T. Mugisha and Obiora C. Collins, Determining the effects of transplacental and direct transmission on the probability of persistence in a bluetongue virus model in temperate and tropical regions, Results in Applied Mathematics 7 (2020), 100120.
[12]Gideon A. Ngwa and William S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations, Math. Comput. Modelling 32(7-8) (2000), 747-763.
[13]R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973.
[14]X. R. Mao, Stochastic Differential Equations and their Applications, Horwood Publishing House, Chichester, 1997.