A STOCHASTIC MODEL FOR THE SPREAD OF HUMAN PLASMODIA

  • Abdoul KarimDRABO Département de Mathématiques de Décision, Université Thomas SANKARA, 12 BP 417 Ouagadougou, Burkina Faso
  • Frédéric BERE Département de Mathématiques, Ecole Normale Supérieure, 01 BP 1757 Ouagadougou 01, Burkina Faso
  • Sibiri NarcisseDOLEMWEOGO Département de Mathématiques, Université JosephKI-ZERBO, 03 BP 7021 Ouagadougou, Burkina Faso
  • S. P. Clovis NITIEMA Département de Mathématiques de Décision, Université Thomas SANKARA, 12 BP 417 Ouagadougou, Burkina Faso
Article ID: 2420
Keywords: Plasmodium falciparum, $\left(S_h L_h I_h R_h S_h-I_v\right)$, model, stochastic differential equations

Abstract

We use stochastic differential equations (SDEs) to model the spread of the malaria parasite through a compartmental model of the type $\left(S_h L_h I_h R_h S_h-I_v\right)$. Considering the transmission rates $\bar{\beta}(t)$ and $\bar{v}(t)$ by introducing standard Brownian motion in order to render the ordinary differential equation into SDE, we obtain the existence and uniqueness of the solution.

References

[1]Ronald Ross, The Prevention of Malaria, John Murray, London, 1911.

[2]David L. Smith, Katherine E. Battle, Simon I. Hay, Christopher M. Barker, Thomas W. Scott and F. Ellis McKenzie, Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens, PLoS Pathogens 8(4) (2012), e1002588.

[3]Rachel Waema Mbogo, Livingstone S. Luboobi and John W. Odhiambo, A stochastic model for malaria transmission dynamics, J. Appl. Math. 2018 (2018), Art. ID 2439520, 13 pp.

[4]Reuben I. Gweryina and Anande R. Kimbir, Dynamical behavior of a malaria relapse model with insecticide treated nets (itns) as protection measure, Applications and Applied Mathematics: An International Journal (AAM) 15(1) (2020), 9.

[5]Yongli Cai, Yun Kang and Weiming Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput. 305 (2017), 221-240.

[6]Xiaomei Ren and Tiansi Zhang, Global analysis of an SEIR epidemic model with a ratio dependent nonlinear incidence rate, Journal of Applied Mathematics and Physics 5(12) (2017), 2311-2319.

[7]Derdei Bichara, Etude de modèles épidémiologiques: stabilité, observation et estimation de paramètres, PhD thesis, Université de Lorraine, 2013.

[8]Pauline van den Driessche and James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180(1-2) (2002), 29-48.

[9]Julie Mintsa Mi Ondo Mintsa Mi Ondo, Les aspects spatiaux dans la modélisation en épidémiologie, PhD thesis, Université de Grenoble, 2012.

[10]Jacek Banasiak, Rachid Ouifki and Woldegebriel Assefa Woldegerima, Some mathematical tools for modelling malaria: a subjective survey, Biomath 10 (2021), 1-19.

[11]Francis Mugabi, Kevin J. Duffy, Joseph Y. T. Mugisha and Obiora C. Collins, Determining the effects of transplacental and direct transmission on the probability of persistence in a bluetongue virus model in temperate and tropical regions, Results in Applied Mathematics 7 (2020), 100120.

[12]Gideon A. Ngwa and William S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations, Math. Comput. Modelling 32(7-8) (2000), 747-763.

[13]R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973.

[14]X. R. Mao, Stochastic Differential Equations and their Applications, Horwood Publishing House, Chichester, 1997.

Published
2023-11-30
How to Cite
KarimDRABO, A., BERE, F., NarcisseDOLEMWEOGO, S., & NITIEMA, S. P. C. (2023). A STOCHASTIC MODEL FOR THE SPREAD OF HUMAN PLASMODIA. Advances in Differential Equations and Control Processes, 30(4). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2420
Section
Articles