NUMERICAL SIMULATION OF ROSENAU-KORTEWEG-DE VRIES REGULARIZED LONG WAVE EQUATION WITH FLUX LIMITERS METHOD

  • OUEDRAOGO Mamadou Institut des Sciences et de Technologie, Ecole Normale Supérieure IST/ENS, 01 BP 1757 Ouaga 01, Burkina Faso; Laboratoire d’Analyse Numérique d'Informatique et de BIOmathématique LANIBIO, Université Joseph KI-ZERBO, Burkina Faso
  • LAMIEN Kassiénou Institut des Sciences et de Technologie, Ecole Normale Supérieure IST/ENS, 01 BP 1757 Ouaga 01, Burkina Faso; Laboratoire d’Analyse Numérique d'Informatique et de BIOmathématique LANIBIO, Université Joseph KI-ZERBO, Burkina Faso
  • SOMA Mifiamba Laboratoire d’Analyse Numérique d'Informatique et de BIOmathématique LANIBIO, Université Joseph KI-ZERBO, Burkina Faso; Département de Mathématiques, Université Thomas SANKARA (Centre Universitaire de Tenkodogo), Burkina Faso
  • SO Ousséni Institut des Sciences et de Technologie, Ecole Normale Supérieure IST/ENS, 01 BP 1757 Ouaga 01, Burkina Faso; Laboratoire d’Analyse Numérique d'Informatique et de BIOmathématique LANIBIO, Université Joseph KI-ZERBO, Burkina Faso
Article ID: 2418
Keywords: flux limiter method; Rosenau-Korteweg-de Vries-regularized long wave; error norm; invariant

Abstract

In this paper, the flux limiter technique based on the method of lines is designed to simulate the nonlinear Rosenau-Korteweg-de Vries-regularized long wave equation. In order to illustrate the efficiency, accuracy and essentially non-oscillatory property of the present method, the error norms, discrete mass, momentum and energy conservative properties have been calculated. These calculations give good agreement for the exact solutions and numerical solutions of solitary and shock wave.

References

[1]N. M. Yagmurlu, B. Karaagac and S. Kutluay, Numerical solutions of Rosenau-RLW equation using Galerkin cubic B-Spline finite element method, American Journal of Computational and Applied Mathematics 7(1) (2017), 1-10.

[2]Muyassar Ahmat and Jianxian Qiu, SSP IMEX Runge-Kutta WENO scheme for generalized Rosenau-KdV-RLW equation, Journal of Mathematical Study (JMS) 55(1) (2022), 1-21.

[3]P. Razborova, A. Bouthina and Anjan Biswas, Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity, Appl. Math. Inf. Sci. 8(2) (2014), 485-491.

[4]S. Pamuk and I. Atac, The method of lines for the numerical solution of a mathematical model in the initiation of angiogenesis, TWMS Journal of Applied and Engineering Mathematics 3(2) (2013), 182-197.

[5]H. O. Bakodah and M. A. Banaja, The method of lines solution of the regularized long-wave equation using Runge-Kutta time discretization method, Math. Probl. Eng. (2013), Art. ID 804317, 8 pp.

[6]J. P. Kauthen, The method of lines for parabolic partial integro-differential equations, Journal of Integral Equations and Applications 4(1) (1992), 69-72.

[7]Adek Tasri, Comparison of errors caused by flux limiters on the numerical solution of advection-diffusion problem, Nigerian Journal of Technological Development 19(4) (2022), 309-312.

[8]F. S. Gokhan, G. W. Griffiths and W. E. Schiesser, Method of lines solution to the transient SBS equations for nanosecond Stokes pulses, Journal of the European Optical Society-Rapid Publications 8 (2013), 13049-3-13049-6.

[9]Ouedraogo Mamadou, Some Longin and Lamien Kassienou, Using some flux limiters methods to solve three test problems, Far East J. Appl. Math. 93(2) (2015), 83-108.

[10]Polina Razborova, Bouthina Ahmed and Anjan Biswas, Solitons, shock waves and conservation laws of Rosenau-KdV-RLW equation with power law nonlinearity, Appl. Math. Inform. Sci. 8(2) (2014), 485-487.

[11]Ankur, Ram Jiwari and Naresh Kumar, Analysis and simulation of Korteweg-de Vries-Rosenau-regularised long-wave model via Galerkin finite element method, Computers and Mathematics with Applications 135 (2023), 134-148.

[12]P. Razborova, L. Moraru and A. Biswas, Perturbation of dispersive shallow water waves with Rosenau-KdV-RLW equation and power law nonlinearity, Romanian Journal of Physics 59(7-8) (2014), 658-676.

[13]Ahlem Ghiloufi and Khaled Omrani, New conservative difference schemes with fourth-order accuracy for some model equation for nonlinear dispersive waves, Numer. Methods Partial Differential Equations 34(2) (2018), 451-500.

[14]Sibel Ozer, An effective numerical technique for the Rosenau-KdV-RLW equation, Journal of Balikesir University Institute of Science and Technology 20(3) (2018), 1-14.

[15]Jiaxiang Cai, Hua Liang and Chun Zhang, Efficient high-order structure-preserving methods for the generalized Rosenau-type equation with power law nonlinearity, Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 122-131.

[16]Sibel Ozer, Two efficient numerical methods for solving Rosenau-KdV-RLW equation, The Kuwait Journal of Science 48(1) (2021), 14-24.

[17]S. Battal Gazi Karakoca and Turgut Akb, Numerical simulation of dispersive shallow water waves with Rosenau-KdV equation, International Journal of Advances in Applied Mathematics and Mechanics 3(3) (2016), 32-40.

[18]Graham W. Griffiths and William E. Schiesser, A compendium of partial differential equations, Method of Lines Analysis with Matlab, Cambridge University Press, 2009.

[19]Sibel Ozer, Numerical solution of the Rosenau-KdV-RLW equation by operator splitting techniques based on B-spline collocation method, Numer. Methods Partial Differential Equation 35(5) (2019), 1928-1943.

[20]Mohammadreza Foroutan and Ali Ebadian, Chebyshev rational approximations for the Rosenau-KdV-RLW equation on the whole line, International Journal of Analysis and Applications 16(1) (2018), 1-15.

[21]S. B. G. Karakoc, Fuzheng Gao and S. K. Bhowmik and B. Seydi, Solitons and shock waves solutions for the Rosenau-KdV-RLW equation, Journal of Science and Arts 4(45) (2018), 1073-1088.

Published
2023-11-30
How to Cite
Mamadou, O., Kassiénou, L., Mifiamba, S., & Ousséni, S. (2023). NUMERICAL SIMULATION OF ROSENAU-KORTEWEG-DE VRIES REGULARIZED LONG WAVE EQUATION WITH FLUX LIMITERS METHOD. Advances in Differential Equations and Control Processes, 30(4). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2418
Section
Articles