EXISTENCE OF SOLUTIONS FOR NONLINEAR VOLTERRA FREDHOLM INTEGRODIFFERENTIAL EQUATION OF HIGHER ORDER VIA $S$-ITERATION METHOD

  • Haribhau L. Tidke Department of Mathematics, School of Mathematical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India
  • Gajanan S. Patil Department of Mathematics, PSGVPM’s ASC College, Shahada Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India
Article ID: 2414
Keywords: existence; normal S-iterative method; Volterra-Fredholm integrodifferential equation; continuous dependence; closeness; parameters

Abstract

In this paper, we study the existence and other properties of the solution of the nonlinear Volterra Fredholm integrodifferential equation of higher order. The tool employed in the analysis is based on the application of the $S$-iteration method. Various properties such as dependence on initial data, closeness of solutions and dependence on parameters and functions involved therein are obtained using the $S$-iteration method. Examples are provided in support of findings.

References

[1]R. Agarwal, D. O’Regan and D. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), 61-79.

[2]Y. Atalan and V. Karakaya, Iterative solution of functional Volterra-Fredholm integral equation with deviating argument, J. Nonlinear Convex Anal. 18(4) (2017), 675-684.

[3]Y. Atalan and V. Karakaya, Stability of nonlinear Volterra-Fredholm integro differential equation: a fixed point approach, Creative Mathematics and Informatics 26(3) (2017), 247-254.

[4]Y. Atalan and V. Karakaya, Investigation of some fixed point theorems in hyperbolic spaces for a three step iteration process, Korean Journal of Mathematics 27(4) (2019), 929-947.

[5]Y. Atalan and V. Karakaya, An example of data dependence result for the class of almost contraction mappings, Sahand Communications in Mathematical Analysis (SCMA) 17(1) (2020), 139-155.

[6]Yunus Atalan, Faik Gürsoy and Abdul Rahim Khan, Convergence of S-iterative method to a solution of Fredholm integral equation and data dependency, Facta Univ. Ser. Math. Inform. 36(4) (2021), 685-694.

[7]V. Berinde and M. Berinde, The fastest Krasnoselskij iteration for approximating fixed points of strictly pseudo-contractive mappings, Carpathian J. Math. 21(1-2) (2005), 13-20.

[8]V. Berinde, Existence and approximation of solutions of some first order iterative differential equations, Miskolc Math. Notes 11(1) (2010), 13-26.

[9]C. E. Chidume, Iterative approximation of fixed points of Lipschitz pseudo contractive maps, Proc. Amer. Math. Soc. 129(8) 2001, 2245-2251.

[10]R. Chugh, V. Kumar and S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, American Journal of Computational Mathematics 2 (2012), 345-357.

[11]M. B. Dhakne and H. L. Tidke, Existence and uniqueness of solutions of nonlinear mixed integrodifferential equations with nonlocal condition in Banach spaces, Electron. J. Differential Equations 2011(31) (2011), 110.

[12]M. Dobritoiu, An integral equation with modified argument, Stud. Univ. Babes-Bolyai Math. XLIX(3) (2004), 27-33.

[13]M. Dobritoiu, System of integral equations with modified argument, Carpathian J. Math. 24(2) (2008), 26-36.

[14]M. Dobritoiu, A nonlinear Fredholm integral equation, TJMM 1(1-2) (2009), 25-32.

[15]M. Dobritoiu, A class of nonlinear integral equations, TJMM 4(2) (2012), 117-123.

[16]M. Dobritoiu, The approximate solution of a Fredholm integral equation, International Journal of Mathematical Models and Methods in Applied Sciences 8 (2014), 173-180.

[17]M. Dobritoiu, The existence and uniqueness of the solution of a nonlinear Fredholm Volterra integral equation with modified argument via Geraghty contractions, Mathematics 9 (2020), 29. https://dx.doi.org/10.3390/math9010029.

[18]F. Gürsoy and V. Karakaya, Some convergence and stability results for two new Kirk type hybrid fixed point iterative algorithms, Journal of Function Spaces 2014 (2014), 1-8. doi: 10.1155/2014/684191.

[19]F. Gürsoy, V. Karakaya and B. E. Rhoades, Some convergence and stability results for the Kirk Multistep and Kirk-SP fixed point iterative algorithms, Abstr. Appl. Anal. 2014 (2014), 1-12. doi: 10.1155/2014/806537.

[20]E. Hacioglu, F. Grsoy, S. Maldar, Y. Atalan and G. V. Milovanovic, Iterative approximation of fixed points and applications to two-point second-order boundary value problems and to machine learning, Appl. Numer. Math. 167 (2021), 143-172.

[21]N. Hussain, A. Rafiq, B. Damjanovic and R. Lazovic, On rate of convergence of various iterative schemes, Fixed Point Theory Appl. Volume 2011, Article ID 45, 6 pages.

[22]S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150.

[23]S. M. Kang, A. Rafiq and Y. C. Kwun, Strong convergence for hybrid S-iteration scheme, J. Appl. Math. Volume 2013, Article ID 705814, 4 pages. http://dx.doi.org/10.1155/2013/705814.

[24]S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl. Volume 2013, Article ID, 10 pages.

[25]S. Maldar, Y. Atalan and K. Dogan, Comparison rate of convergence and data dependence for a new iteration method, Tbilisi Mathematical Journal 13(4) (2020), 65-79.

[26]S. Maldar, F. Grsoy, Y. Atalan and M. Abbas, On a three-step iteration process for multivalued Reich-Suzuki type a-nonexpansive and contractive mappings, J. Appl. Math. Comput. 68 (2022), 863-883.

[27]S. Maldar, Iterative algorithms of generalized nonexpansive mappings and monotone operators with application to convex minimization problem, J. Appl. Math. Comput. 68 (2022), 1841-1868.

[28]B. G. Pachpatte, On Fredholm type integrodifferential equation, Tamkang J. Math. 39(1) (2008), 85-94.

[29]B. G. Pachpatte, On higher order Volterra-Fredholm integrodifferential equation, Fasc. Math. 37 (2007), 35-48.

[30]D. R. Sahu, Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory 12(1) (2011), 187-204.

[31]D. R. Sahu and A. Petrusel, Strong convergence of iterative methods by strictly pseudo contractive mappings in Banach spaces, Nonlinear Anal. 74(17) (2011), 6012-6023.

[32]S. Soltuz and T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl. 2008 (2008), 242916. https://doi.org/10.1155/2008/242916.

[33]H. L. Tidke, Some results on certain Volterra integral and integro-differential functional equations with finite delay, Int. J. Math. Sci. 17(3-4) (2018), 241-266.

[34]H. L. Tidke and M. B. Dhakne, Nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition, Appl. Math. 57(3) (2012), 297-307.

[35]H. L. Tidke and M. B. Dhakne, Nonlocal Cauchy problem for nonlinear mixed integrodifferential equations, Tamkang J. Math. 41(4) (2010), 361-373.

Published
2023-06-28
How to Cite
L. Tidke, H., & S. Patil, G. (2023). EXISTENCE OF SOLUTIONS FOR NONLINEAR VOLTERRA FREDHOLM INTEGRODIFFERENTIAL EQUATION OF HIGHER ORDER VIA $S$-ITERATION METHOD. Advances in Differential Equations and Control Processes, 30(3). Retrieved from https://ojs.acad-pub.com/index.php/ADECP/article/view/2414
Section
Articles