CONVERGENCE AND APPLICATION OF A MODIFIED DOUBLE LAPLACE TRANSFORM (MDLT) IN SOME EQUATIONS OF MATHEMATICAL PHYSICS
Abstract
Dealing with a modified double Laplace transform (MDLT) technique, we have established some convergence results. Then, using this new technique, we propose resolutions of some equations such as pseudo-hyperbolic and the Benney-Luke equations. The advantage of MDLT is that we can obtain exact solutions in one step. The technique aims to provide viable results with respect to particular cases. Finally, some numerical results are presented.
References
[1]A. A. Alderremy and Tarig M. Elzaki, On the new double integral transform for solving singular system of hyperbolic equations, J. Nonlinear Sci. Appl. 11 (2018), 1207-1214. Available online at www.isr-publications.com/jnsa.
[2]A. A. Hemeda, New iterative method: an application for solving fractional physical differential equations, Journal of Abstract and Applied Analysis 2013 (2013), Article ID 617010, 9 pp.
[3]Aisha Abdullah Alderremy, Tarig M. Elzaki and Mourad Chamekh, New transform iterative method for solving some Klein-Gordon equations, Results in Physics 10 (2018), 655-659. doi: https://doi.org/10.1016/j.rinp.2018.07.004.
[4]E. Hesameddini and H. Latifizadeh, Reconstruction of variational iteration algorithms using the Laplace transform, Int. J. Nonlinear Sci. Numer. Simul. 10(11-12) (2009), 1377-1382.
[5]G. C. Wu and D. Baleanu, Variational iteration method for fractional calculus - a universal approach by Laplace transform, Adv. Difference Equ. 2013 (2013), 18-27.
[6]G. C. Wu, Variational iteration method for solving the time-fractional diffusion equations in porous medium, Chin. Phys. B 21 (2012), 120504.
[7]G. C. Wu and D. Baleanu, Variational iteration method for the Burgers’ flow with fractional derivatives-New Lagrange multipliers, Applied Mathematical Modelling 37 (2012), 6183-6190.
[8]G. C. Wu, Challenge in the variational iteration method-a new approach to identification of the Lagrange multipliers, Journal of King Saud University-Science 25 (2013), 175-178.
[9]G. C. Wu, Laplace transform overcoming principle drawbacks in application of the variational iteration method to fractional heat equations, Thermal Science 16(4) (2012), 1257-1261.
[10]Hassan Eltayeb Gadain, Application of double Laplace decomposition method for solving singular one dimensional system of hyperbolic equations, J. Nonlinear Sci. Appl. 10 (2017), 111-121.
[11]Z. Islam, M. M. Hossain and M. A. Sheikh, Exact traveling wave solutions to Benney-Luke Equation, GANIT: Journal of Bangladesh Mathematical Society 37 (2018), 1-14. https://doi.org/10.3329/ganit.v37i0.35721.
[12]J. H. He, Variational iteration method for delay differential equations, Commun. Nonlinear Sci. Numer. Simul. 2(4) (1997), 235-236.
[13]J. H. He, Variational iteration method-a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech. 34 (1999), 699-708.
[14]J. H. He, Variational iteration method for autonomous ordinary differential systems, Appl. Math. Comput. 114 (2000), 115-123.
[15]Ranjit R. Dhunde and G. L. Waghmare, On some convergence theorems of double Laplace transform, Journal of Informatics and Mathematical Sciences 6(1) (2014), 45-54.
[16]S. A. Khuri and A. Sayfy, A Laplace variational iteration strategy for the solution of differential equations, Appl. Math. Lett. 25 (2012), 2298-2305.
[17]Tarig M. Elzaki, Application of projected differential transform method on nonlinear partial differential equations with proportional delay in one variable, World Applied Sciences Journal 30(3) (2014), 345-349. doi: 10.5829/idosi.wasj.2014.30.03.1841.
[18]Tarig M. Elzaki and J. Biazar, Homotopy perturbation method and Elzaki transform for solving system of nonlinear partial differential equations, World Applied Sciences Journal 24(7) (2013), 944-948. doi: 10.5829/idosi.wasj.2013.24.07.1041.
[19]Tarig M. Elzaki, Salih M. Elzaki and Elsayed A. Elnour, On the new integral transform “ELzaki transform” fundamental properties investigations and applications, Global Journal of Mathematical Sciences: Theory and Practical 4(1) (2012), 1-13.
[20]Tarig M. Elzaki and Salih M. Elzaki, On the connections between Laplace and Elzaki transforms, Advances in Theoretical and Applied Mathematics 6(1) (2011), 1-11.
[21]Tarig M. Elzaki and Eman M. A. Hilal, Solution of telegraph equation by modified of double Sumudu transform “Elzaki transform”, Mathematical Theory and Modeling 2(4) (2012), 95-103.
[22]Tarig M. Elzaki, Double Laplace variational iteration method for solution of nonlinear convolution partial differential equations, Archives Des Sciences 65(12) (2012), 588-593.
[23]E. Huntley and A. S. I. Zinober, Applications of numerical double Laplace transform algorithms to the solution of linear partial differential equations, Computing 21(3) (1979), 245-258.
[24]K. Khan, Z. Khan, A. Ali and M. Irfan, Investigation of Hirota equation: modified double Laplace decomposition method, Phys. Scripta 96(10) (2021), 104006.
[25]M. Saif, F. Khan, K. S. Nisar and S. Araci, Modified Laplace transform and its properties, J. Math. Computer Sci. 21 (2020), 137-135.
[26]H. E. Gadain, Solving coupled pseudo-parabolic equation using a modified double Laplace decomposition method, Acta Math. Sci. Ser. B (Engl. Ed.) 38(1) (2018), 333-346.