EXISTENCE AND OPTIMAL CONTROL ANALYSIS OF ACID-MEDIATED TUMOR INVASION MODEL
Abstract
The distributed optimal control problem of a highly nonlinear coupled system of reaction-diffusion equations is investigated in the study. Normal cell density, tumor cell density, excess H+ ion concentration, and chemotherapy drug concentration are all represented by partial differential equations (PDEs) in the coupled system of acid-mediated tumor invasion model. It is a usual factor to formulate an optimal control problem by introducing control interventions while considering the tumor invasion model with drug chemotherapy. However, in our model, we consider a constant drug injection rate as a control variable based on biological motivation. The major goal of our optimal control problem is to reduce the overall amount of medicine supplied while minimizing cancer cell proliferation. First, we prove the existence of solutions to the direct problem using the Faedo-Galerkin approximation method, deriving a priori estimates, and then passing to the limit in the approximate solutions using monotonicity and compactness arguments. We introduce a functional to minimize and to establish the existence of optimal control for the proposed optimal control problem. Using the Lagrangian framework, we derive the adjoint problem and necessary optimality condition associated with our problem. Finally, we prove the existence of weak solutions to the adjoint system.
References
[1]B. Ainseba, M. Bendahmane and R. Ruiz-Baier, Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology, J. Math. Anal. Appl. 388(1) (2012), 231-247. Doi: 10.1016/j.jmaa.2011.11.069.
[2]A. R. A. Anderson, A hybrid mathematical model of solid tumor invasion: the importance of cell adhesion, Mathematical Medicine and Biology: A Journal of the IMA 22(2) (2005), 163-186. Doi: 10.1093/imammb/dqi005.
[3]R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumour growth: the contribution of mathematical modeling, Bull. Math. Biol. 66 (2004), 1039-1091. Doi: 10.1016/j.bulm.2003.11.002.
[4]A. L. de Araujo and P. M. de Magalhães, Existence of solutions and optimal control for a model of tissue invasion by solid tumours, J. Math. Anal. Appl. 421(1) (2015), 842-877. Doi: 10.1016/j.jmaa.2014.07.038.
[5]S. P. Chakrabarty and F. B. Hanson, Distributed parameters deterministic model for treatment of brain tumors using Galerkin finite element method, Math. Biosci. 219(2) (2009), 129-141. Doi: 10.1016/j.mbs.2009.03.005.
[6]A. J. Coldman and J. M. Murray, Optimal control for a stochastic model of cancer chemotherapy, Math. Biosci. 168(2) (2000), 187-200. Doi: 10.1016/S0025-5564(00)00045-6.
[7]L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, Vol. 19, 2002.
[8]R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion, Cancer Research 56(24) (1996), 5745-5753. Doi: PMID: 8971186.
[9]D. A. Knopoff, D. R. Fernández, G. A. Torres and C. V. Turner, Adjoint method for a tumor growth PDE-constrained optimization problem, Comput. Math. Appl. 66(6) (2013), 1104-1119. Doi: 10.1016/j.camwa.2013.05.028.
[10]U. Ledzewicz, M. Naghnaeian and H. Schattler, Optimal response to chemotherapy for a mathematical model of tumor-immune dynamics, J. Math. Biol. 64 (2012), 557-577. Doi: 10.1007/s00285-011-0424-6.
[11]A. A. I. Quiroga, D. Fernández, G. A. Torres and C. V. Turner, Adjoint method for a tumor invasion PDE-constrained optimization problem in 2D using adaptive finite element method, Appl. Math. Comput. 270 (2015), 358-368. Doi: 10.1016/j.amc.2015.08.038.
[12]S. U. Ryu and A. Yagi, Optimal control of Keller-Segel equations, J. Math. Anal. Appl. 256(1) (2001), 45-66. Doi: 10.1006/jmaa.2000.7254.
[13]S. U. Ryu, Optimal control for a parabolic system modeling chemotaxis, Trends in Mathematics Information Center for Mathematical Sciences 6(1) (2003), 45-49. https://www.yumpu.com/en/document/view/34717396/optimalcontrol-for-a-parabolic-system-modelling-.
[14]L. Shangerganesh, N. Barani Balan and K. Balachandran, Existence and uniqueness of solutions of degenerate chemotaxis system, Taiwanese J. Math. 18(5) (2014), 1605-1622. Doi: 10.11650/tjm.18.2014.3080.
[15]L. Shangerganesh, V. N. Deivamani and S. Karthikeyan, Existence of global weak solutions for cancer invasion parabolic system with nonlinear diffusion, Commun. Appl. Anal. 21(4) (2017), 607-629. Doi: 10.12732/caa.v21i4.8.
[16]P. T. Sowndarrajan and L. Shangerganesh, Optimal control problem for cancer invasion parabolic system with nonlinear diffusion, Optimization 67(10) (2018), 1819-1836. Doi: 10.1080/02331934.2018.1486404.
[17]P. T. Sowndarrajan, J. Manimaran, A. Debbouche and L. Shangerganesh, Distributed optimal control of a tumor growth treatment model with cross-diffusion effect, The European Physical Journal Plus 134 (2019), 463. Doi: 10.1140/epjp/i2019-12866-8.
[18]P. T. Sowndarrajan, N. Nyamoradi, L. Shangerganesh and J. Manimaran, Mathematical analysis of an optimal control problem for the predator-prey model with disease in prey, Optimal Control Appl. Methods 41(5) (2020), 1495-1509. Doi: 10.1002/oca.2611.
[19]G. W. Swan, Role of optimal control in cancer chemotherapy, Math. Biosci. 101(2) (1990), 237-284. Doi: 10.1016/0025-5564(90)90021-p.
[20]G. W. Swan and T. L. Vincent, Optimal control analysis in the chemotherapy of IgG multiple myeloma, Bull. Math. Biol. 39(3) (1977), 317-337. Doi: 10.1007/BF02462912.
[21]A. B. Holder and M. R. Rodrigo, Model for acid-mediated tumour invasion with chemotherapy intervention II: spatially heterogeneous populations, Math. Biosci. 270 (2015), 10-29. Doi: 10.1016/j.mbs.2015.09.007.
[22]A. B. Holder and M. R. Rodrigo, Model for acid-mediated tumour invasion with chemotherapy intervention I: homogeneous populations, 2014. Reprint arXiv:1412.0748, Doi: 10.48550/arXiv.1412.0748.
[23]O. Warburg, F. Wind and E. Negelein, Über den Stoffwechsel von Tumoren im Körper, Klin Wochenschr 5 (1926), 829-832. Doi: 10.1007/BF01726240.