Vehicle structural road noise prediction based on an improved Long Short-Term Memory method
Abstract
The control of vehicle interior noise has become a critical metric for assessing noise, vibration, and harshness (NVH) in vehicles. During the initial phases of vehicle development, accurately predicting the impact of road noise on interior noise is essential for reducing noise levels and expediting the product development cycle. In recent years, data-driven methods based on machine learning have gained significant attention due to their robust capability in navigating complex data mapping relationships. Notably, surrogate models have demonstrated exceptional performance in this domain. Numerous researchers have integrated diverse intelligent algorithms into the study of vehicle noise, leveraging advantages such as the elimination of precise modeling requirements, extensive solution space exploration, continuous learning from data, and robust algorithmic versatility. However, in NVH engineering applications, data-driven models face inherent limitations, particularly in interpretability and stability. To address these issues, this paper introduces an improved Long Short-Term Memory (LSTM) network that combines knowledge and data. Inspired by the physical information neural network concept, this approach incorporates values calculated through empirical formulas into the neural network as constraints. Comparative assessments with traditional LSTM networks highlight the advantages of this deep learning model. By integrating empirical formulas constraints, the model not only enhances interpretability but also achieves robust generalization with fewer data samples. The proposed method is validated on a specific vehicle model, showing significant improvements in prediction accuracy and efficiency.
References
[1]Zhu, H. L., Zhao, J., Wang, Y. W., Ding, W. P., Pang, J. et al. (2024). Improving of pure electric vehicle sound and vibration comfort using a multi-task learning with task-dependent weighting method. Measurement, 233, 114752. DOI: 10.1016/J.MEASUREMENT.2024.114752.
[2]Cășeriu, B., and Petruța B. (2022). Automotive comfort: State of the art and challenges. International Conference Interdisciplinarity in Engineering. Cham: Springer International Publishing, pp. 375-387. DOI: 10.1007/978-3-031-22375-4_30.
[3]Wu, Y. R., Liu, X. B., Huang, H. B., Wu, Y. D., Ding, W. P. et al. (2023). Multi-objective prediction and optimization of vehicle acoustic package based on ResNet neural network. Sound & Vibration, 57(1), 73-95. DOI: 10.32604/sv.2023.044601.
[4]Praticò, F. G. (2014). On the dependence of acoustic performance on pavement characteristics. Transportation Research Part D, 79-87. DOI: 10.1016/j.trd.2014.04.004.
[5]Hazra, S. and Reddy, J. (2022). An Aspect of Noise, Vibration, and Harshness Issues in Electric Vehicles. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 6(1), 23-33. DOI: 10.4271/10-06-01-0002.
[6]SheikhMozafari, M. J. (2024). Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM. Sound & Vibration, 58(1), 81-100. DOI: 10.32604/sv.2024.048897.
[7]Huang, H. B., Lim, T. C., Wu, J., Ding, W. P., Pang, J. (2023). Multitarget prediction and optimization of pure electric vehicle tire/road airborne noise sound quality based on a knowledge-and data-driven method. Mechanical Systems and Signal Processing, 197, 110361. DOI: 10.1016/j.ymssp.2023.110361.
[8]Bianco, F., Fredianelli, L., Castro, F. L., Paolo, G., Gagliardi, P. et al. (2020). Stabilization of a p-u Sensor Mounted on a Vehicle for Measuring the Acoustic Impedance of Road Surfaces. Sensors, 1239(5). DOI: 10.3390/s20051239.
[9]Praticò, F. G., Fedele, R., Pellicano, G. (2021). Monitoring Road Acoustic and Mechanical Performance. European Workshop on Structural Health Monitoring, 127. DOI: 10.1007/978-3-030-64594-6_58.
[10]RamosRomero, C., Asensio, C., Moreno, R., Arcas, G. (2022). Urban Road Surface Discrimination by Tire-Road Noise Analysis and Data Clustering. Sensors, 24, 9686-9686. DOI:10.3390/S22249686.
[11]DelPizzo, L. G., Teti, L., Moro, A., Bianco, F., Fredianelli, L. et al. (2020). Influence of texture on tyre road noise spectra in rubberized pavements. Applied Acoustics, 107080-107080. DOI: 10.1016/j.apacoust.2019.107080.
[12]Sun, P., Dai, R. X., Li, H. Q., Zheng, Z. W., Wu, Y. D. et al. (2024). Multi-Objective Prediction of the Sound Insulation Performance of a Vehicle Body System Using Multiple Kernel Learning–Support Vector Regression. Electronics, 13(3), 538. DOI: 10.3390/electronics13030538.
[13]Lan, Z., Yuan, M., Shao, S., Li, F. (2023). Noise Emission Models of Electric Vehicles Considering Speed, Acceleration, and Motion State. Int. J. Environ. Res. Public Health, 20, 3531. DOI: 10.3390/ijerph20043531.
[14]Kanka, S., Fredianelli, L., Artuso, F., Fidecaro, F., Licitra, G. (2023). Evaluation of Acoustic Comfort and Sound Energy Transmission in a Yacht. Energies, 2, 808-808. DOI: 10.3390/EN16020808.
[15]Borelli, D., Gaggero, T., Rizzuto, E., Schenone, C. (2021). Onboard ship noise: Acoustic comfort in cabins. Applied Acoustics, 177, DOI:10.1016/J.APACOUST.2021.107912.
[16]AlvesFilho, J. M., Lenzi, A., Zannin, P. H. T. (2003). Effects of traffic composition on road noise: a case study. Transportation Research Part D, 1, 75-80. DOI: 10.1016/j.trd.2003.08.001.
[17]Praticò, F. G., Anfosso-Lédée, F. (2012). Trends and Issues in Mitigating Traffic Noise through Quiet Pavements. Procedia - Social and Behavioral Sciences, 203-212. DOI: 10.1016/j.sbspro.2012.09.873.
[18]Xia, X., Ye, S., Hou, L., Wu, D., Lin, Q. (2024). Instantaneous flow area calculation for modeling an axial piston pump: A point cloud-based technique. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy. DOI: 10.1177/09576509241256499.
[19]Teti, L., León, G. D., DelPizzo, L. G, Moro, A., Bianco, F. et al. (2020). Modelling the acoustic performance of newly laid low-noise pavements. Construction and Building Materials, 118509-118509. DOI: 10.1016/j.conbuildmat.2020.118509.
[20]Yin, L., Zhang, Z. Q., Wu, M., Wang, Z. L., Ma, C. et al. (2023). Adaptive parallel filter method for active cancellation of road noise inside vehicles. Mechanical Systems and Signal Processing, 193, 110274. DOI: 10.1016/j.ymssp.2023.110274.
[21]Huang, H. B., Wang, Y. W., Wu, J. H., Ding, W. P. Pang, J. et al. (2024). Prediction and optimization of pure electric vehicle tire/road structure-borne noise based on knowledge graph and multi-task ResNet.Expert Systems With Applications(PB), 124536-124536. DOI: 10.1016/J.ESWA.2024.124536.
[22]Fan, D., Dai, P., Yang, M., Jia, W., Jia, X. et al. (2022). Research on Maglev Vibration Isolation Technology for Vehicle Road Noise Control. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 6(10-06-03-0016), 233-245. DOI: 10.4271/10-06-03-0016.
[23]Park, J., Park, S. (2024). Roadnoise Reduction through Component-TPA with Test and Simulation Convergence Using Blocked Force. SAE Technical Paper, 1(2952). DOI: 10.4271/2024-01-2952.
[24]Fredianelli, L., Pedrini, G., Bolognese, M., Bernardini, M., Fidecaro, F. et al. (2024). Features for Evaluating Source Localization Effectiveness in Sound Maps from Acoustic Cameras. Sensors, 14, 4696-4696. DOI: 10.3390/S24144696.
[25]Licitra, G., Artuso, F., Bernardini, M., Moro, A., Fidecaro, F. et al. (2023). Acoustic Beamforming Algorithms and Their Applications in Environmental Noise. Current Pollution Reports, 3, 486-509. DOI: 10.1007/S40726-023-00264-9.
[26]Huang, H., Huang, X., Ding, W., Yang, M., Fan, D., et.al. (2022). Uncertainty optimization of pure electric vehicle interior tire/road noise comfort based on data-driven. Mechanical Systems and Signal Processing, 165, 108300. DOI: 10.1016/j.ymssp.2021.108300
[27]Peng, C., Cheng, S., Sun, M., Ren, C., Song, J. et al. (2024). Prediction of Sound Transmission Loss of Vehicle Floor System Based on 1D-Convolutional Neural Networks. Sound & Vibration, 58, 81-100. DOI: 10.32604/sv.2024.046940.
[28]Park, U., Kang, Y. J. (2024). Operational transfer path analysis based on neural network. Journal of Sound and Vibration, 579, 118364. DOI: 10.1016/j.jsv.2024.118364.
[29]Wysocki, T. V., Rieger, F., Tsokaktsidis, D. E., Gauterin, F. (2021). Generating Component Designs for an Improved NVH Performance by Using an Artificial Neural Network as an Optimization Metamodel. Designs, 5, 36. DOI: 10.3390/designs5020036.
[30]Li, M., Zhou, W., Liu, J., Zhang, X., Pan, F. et al. (2021). Vehicle Interior Noise Prediction Based on Elman Neural Network. Appllied Sciences, 11(17), 8029. DOI:10.3390/app11178029.
[31]Huang, H., Huang, X., Ding, W., Zhang, S., Pang, J. (2023). Optimization of electric vehicle sound package based on LSTM with an adaptive learning rate forest and multiple-level multiple-object method. Mechanical Systems and Signal Processing, 187, 109932. DOI: 10.1016/j.ymssp.2022.109932.
[32]Yu, Y., Si, X. S., Hu, C. H., Zhang, J. X. (2019). A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput, 31(7), 1235–1270. DOI: 10.1162/neco_a_01199.
[33]Back, J., Lee, S., Min, L. S., An, K., Kwon, D. H. et al. (2021). Design and implementation of comfort-quality HVAC sound inside a vehicle cabin. Applied Acoustics. DOI: 10.1016/J.APACOUST.2021.107940.
[34]Soeta, Y., Sakamoto, Y. (2018). An Exploratory Analysis of Sound Field Characteristics using the Impulse Response in a Car Cabin. Environments, 4, 44. DOI: 10.3390/environments5040044.
[35]Deniz, O., Pedraza, A., Vallez, N., Salido, J., Bueno, G. (2020). Robustness to adversarial examples can be improved with overfitting. International Journal of Machine Learning and Cybernetics, 11, 935-944. DOI: 10.1007/s13042-020-01097-4.
[36]Taherdoost, H. (2023). Deep Learning and Neural Networks: Decision-Making Implications. Symmetry, 15, 1723. DOI: 10.3390/sym15091723.
[37]Al-Selwi, S. M., Hassan, M. F., Abdulkadir, S. J., Muneer, A., Sumiea, E. H. et al. (2024). RNN-LSTM: From applications to modeling techniques and beyond—Systematic review. Journal of King Saud University-Computer and Information Sciences, 102068. DOI: 10.1016/j.jksuci.2024.102068.
[38]Mamdouh, M., Ezzat, M., Hefny, H. (2024). Improving flight delays prediction by developing attention-based bidirectional LSTM network. Expert Systems with Applications, 238, 121747. DOI: 10.1016/j.eswa.2023.121747.
[39]Staudemeyer, R. C., Morris, E. R. (2019). Understanding LSTM--a tutorial into Long Short-Term Memory recurrent neural networks. arXiv preprint. DOI: 10.48550/arXiv.1909.09586.
[40]Huang, Z., Xu, W., Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint. DOI: 10.48550/arXiv.1508.01991.
[41]Raissi, M., Perdikaris, P., Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, Journal of Computational Physics, 378, 686-707. DOI: 10.1016/j.jcp.2018.10.045.
[42]Heydari, A. A., Thompson, C. A., Mehmood, A. (2019). Softadapt: Techniques for adaptive loss weighting of neural networks with multi-part loss functions. arXiv preprint. DOI: 10.48550/arXiv.1912.12355.
[43]Elliott, A. S., Moorhouse, A. T., Huntley, T., Tate, S. (2013). In-situ source path contribution analysis of structure borne road noise. Journal of Sound and Vibration, 332(24), 6276-6295. DOI: 10.1016/j.jsv.2013.05.031.
[44]Zheng, X., Wan, B., Jia, Z., Li, R., Liu, X. et al. (2024). A study on active road noise control based on operational transfer path analysis and selective subband adaptive filtering. Applied Acoustics, 224, 110147. DOI: 10.1016/j.apacoust.2024.110147.
[45]Huang, H. B., Huang, X. R., Li, R. X., Lim, T. C., Ding, W. P. (2016) Sound quality prediction of vehicle interior noise using deep belief networks. Applied Acoustics, 113, 149-161. DOI: 10.1016/j.apacoust.2016.06.021.
[46]Pu, Z. Q., Yi, J. Q., Liu, Z. (2022). A review of research on group intelligent decision-making methods driven by knowledge and data synergy. Journal of Automation, 48(3), 1-17.7. DOI: 10.16383/j.aas.c210118.
[47]Huang, H., Huang, X., Ding, W., Yang, M., Yu, X. et al. (2023). Vehicle vibro-acoustical comfort optimization using a multi-objective interval analysis method. Expert Systems with Applications, 213, 119001. DOI: 10.1016/j.apacoust.2016.06.021
[48]Marotta, R., Strano, R., Terzo, M., Tordela, C. (2024). Multi-Output Physically Analyzed Neural Network for the Prediction of Tire–Road Interaction Forces. SAE, 8(2), 285-308, DOI:10.4271/10-08-02-0016.
[49]ISO, ISO. (2023). Acoustics — Measurement of interior vehicle noise. Geneva, Switzerland: International Organization for Standardization, 5128:2023.
[50]Reyad, M., Sarhan, A. M., Arafa, M. (2023). A modified Adam algorithm for deep neural network optimization. Neural Computing and Applications, 35(23), 17095-17112. DOI: 10.1007/s00521-023-08568-z.
[51]Huang, H. B., Li, R. X., Yang, M. L., Lim, T. C., Ding, W. P. (2017) Evaluation of vehicle interior sound quality using a continuous restricted Boltzmann machine-based DBN. Mechanical Systems and Signal Processing, 84, 245-267. DOI: 10.1016/j.ymssp.2016.07.014
[52]Wang, W. J., Lu, Y. M. (2018). Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model. IOP Conference Series: Materials Science and Engineering, 324, 012049. DOI:10.1088/1757-899X/324/1/012049.
Copyright (c) 2025 Xiongying Yu, Ruxue Dai, Jian Zhang, Yingqi Yin, Sha Li, Peisong Dai, Haibo Huang
This work is licensed under a Creative Commons Attribution 4.0 International License.