Quantum computing in drug discovery
Abstract
Quantum computers are recently being developed in wide varieties, but the computational results from quantum computing have been largely confined to constructing artificial assignments. The applications of quantum computers to real-world problems are still an active area of research. However, challenges arise when the limits of scale and complexity in biological problems are pushed, which has affected drug discovery. The fast-evolving quantum computing technology has transformed the computational capabilities in drug research by searching for solutions for complicated and tedious calculations. Quantum computing (QC) is exponentially more efficient in drug discovery, treatment, and therapeutics, generating profitable business for the pharmaceutical industry. In principle, it can be stated that quantum computing can solve complex problems exponentially faster than classical computing. Here it is needed to mention that QC will not be able to take on every task that classical computers perform—at least not now. It may be classical and quantum-coupled computational technologies combined with machine learning (ML) and artificial intelligence (AI) will solve each task in the future. This review is an overview of quantum computing, which may soon revolutionize the pharmaceutical industry in drug discovery.
References
[1]Mullard A. 2021 FDA approvals. Nature Reviews Drug Discovery. 2022; 21(2): 83-88. doi: 10.1038/d41573-022-00001-9
[2]Lee H, Park D, Kim DS. Determinants of growth in prescription drug spending using 2010-2019 health insurance claims data. Frontiers in Pharmacology. 2021; 12: 681492. doi: 10.3389/fphar.2021.681492
[3]Jackson M, McAdams S. The future of quantum drug discovery. Available online: https://medium.com/cambridge-quantum-computing/the-future-of-quantum-drug-discovery-909aa5140bff (accessed on 6 December 2023).
[4]Sengupta K, Srivastava PR. Quantum algorithm for quicker clinical prognostic analysis: An application and experimental study using CT scan images of COVID-19 patients. BMC Medical Informatics and Decision Making. 2021; 21(1): 227. doi: 10.1186/s12911-021-01588-6
[5]Kais S. Introduction to quantum information and computation for chemistry. In: Kais S (editor). Quantum Information and Computation for Chemistry. John Wiley & Sons; 2014. pp. 1-38. doi: 10.1002/9781118742631
[6]Jordan S. The quantum algorithm zoo. Available online: http://math.nist.gov/quan tum/zoo/ (accessed on 6 December 2023).
[7]Szabo A, Ostlund NS. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory. Collier Macmillan; 1982. 446p.
[8]Hanson DM, Harvey E, Sweeney R, Zielinski TJ. Quantum States of Atoms and Molecules. LibreTexts; 2022.
[9]Parr RG, Yang W. Density-Functional Theory of Atoms and Molecules. Oxford University Press; 1989. 333p. doi: 10.1093/oso/9780195092769.001.0001
[10]Mazziotti DA (editor). Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules. John Wiley & Sons; 2007. Volume 134. doi: 10.1002/0470106603
[11]Iachello F, Levine RD. Algebraic Theory of Molecules. Oxford University Press; 1995. doi: 10.1093/oso/9780195080919.001.0001
[12]Nightingale MP, Umrigar CJ (editors). Quantum Monte Carlo Methods in Physics and Chemistry, 1st ed. Springer Dordrecht; 1999. Volume 525. 467p.
[13]Evers M, Heid A, Ostojic I. Pharma’s digital Rx: Quantum computing in drug research and development. Available online: https://www.mckinsey.com/industries/life-sciences/our-insights/pharmas-digital-rx-quantum-computing-in-drug-research-and-development (accessed on 6 December 2023).
[14]Kadowaki T, Nishimori H. Quantum annealing in the transverse Ising model. Physical Review E. 1998; 58(5): 5355-5363. doi: 10.1103/PhysRevE.58.5355
[15]Herschbach DR, Avery JS, Goscinski O (editors). Dimensional Scaling in Chemical Physics. Springer Dordrecht; 1993. 510p. doi: 10.1007/978-94-011-1836-1
[16]Zhang L, Tan J, Han D, Zhu H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discovery Today. 2017; 22(11): 1680-1685. doi: 10.1016/j.drudis.2017.08.010
[17]Wang S, Sun S, Li Z, et al. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Computational Biology. 2017; 13(1): e1005324. doi: 10.1371/journal.pcbi.1005324
[18]Wang S, Peng J, Ma J, Xu J. Protein secondary structure prediction using deep convolutional neural fields. Scientific Reports. 2016; 6(1): 18962. doi: 10.1038/srep18962
[19]Evans R, Jumper J, Kirkpatrick J, et al. De novo structure prediction with deep-learning based scoring. In: Peoceedings of the 13th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction; December 1-4 2018; Riviera Maya. Protein Structure Prediction Center; 2018.
[20]Holm L, Rosenström P. Dali server: Conservation mapping in 3D. Nucleic Acids Research. 2010; 38: W545-W549. doi: 10.1093/nar/gkq366
[21]Zhao Z, Fitzsimons JK, Osborne MA, et al. Quantum algorithms for training Gaussian processes. Physical Review A. 2019; 100(1): 012304. doi: 10.1103/PhysRevA.100.012304
[22]Liu Y, Zhang S. Fast quantum algorithms for least squares regression and statistic leverage scores. Theoretical Computer Science. 2017; 657: 38-47. doi: 10.1016/j.tcs.2016.05.044
[23]von Burg V, Low GH, Häner T, et al. Quantum computing enhanced computational catalysis. Physical Review Research. 2021; 3(3): 033055. doi: 10.1103/PhysRevResearch.3.033055
[24]Sanders YR, Berry DW, Costa PC, et al. Compilation of fault-tolerant quantum heuristics for combinatorial optimization. PRX Quantum. 2020; 1(2): 020312. doi: 10.1103/PRXQuantum.1.020312
[25]Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nature Reviews Genetics. 2015; 16(6): 321-332. doi: 10.1038/nrg3920
[26]Ringnér M. What is principal component analysis? Nature Biotechnology. 2008; 26(3): 303-304. doi: 10.1038/nbt0308-303
[27]Bishop CM. Pattern Recognition and Machine Learning. Springer; 2006. 738p.
[28]Kitaev AY. Quantum measurements and the Abelian stabilizer problem. Available online: https://arxiv.org/abs/quant-ph/9511026 (accessed on 6 December 2023).
[29]Ching T, Himmelstein DS, Beaulieu-Jones BK, et al. Opportunities and obstacles for deep learning in biology and medicine. Journal of The Royal Society Interface. 2018; 15(141): 20170387. doi: 10.1098/rsif.2017.0387
[30]Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Science. 2018; 4(2): 268-276. doi: 10.1021/acscentsci.7b00572
[31]Smith JS, Isayev O, Roitberg AE. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost. Chemical Science. 2017; 8(4): 3192-3203. doi: 10.1039/C6SC05720A
[32]Harris SA, Kendon VM. Quantum-assisted biomolecular modelling. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010; 368(1924): 3581-3592. doi: 10.1098/rsta.2010.0087
[33]Perdomo-Ortiz A, Dickson N, Drew-Brook M, et al. Finding low-energy conformations of lattice protein models by quantum annealing. Scientific Reports. 2012; 2: 571. doi: 10.1038/srep00571
[34]Li RY, Di Felice R, Rohs R, Lidar DA. Quantum annealing versus classical machine learning applied to a simplified computational biology problem. NPJ Quantum Information. 2018; 4(1): 14. doi: 10.1038/s41534-018-0060-8
[35]Chin AW, Datta A, Caruso F, et al. Noise-assisted energy transfer in quantum networks and light-harvesting complexes. New Journal of Physics. 2010; 12(6): 065002. doi: 10.1088/1367-2630/12/6/065002
[36]Caruso F, Chin AW, Datta A, et al. Entanglement and entangling power of the dynamics in light-harvesting complexes. Physical Review A. 2010; 81(6): 062346. doi: 10.1103/PhysRevA.81.062346
[37]Asadian A, Tiersch M, Guerreschi GG, et al. Motional effects on the efficiency of excitation transfer. New Journal of Physics. 2010; 12(7): 075019. doi: 10.1088/1367-2630/12/7/075019
[38]Mohseni M, Rebentrost P, Lloyd S, Aspuru-Guzik A. Environment-assisted quantum walks in photosynthetic energy transfer. The Journal of Chemical Physics. 2008; 129(17): 174106. doi: 10.1063/1.3002335
[39]Giorda P, Garnerone S, Zanardi P, Lloyd S. Interplay between coherence and decoherence in LHCII photosynthetic complex. Available online: https://arxiv.org/abs/1106.1986 (accessed on 6 December 2023).
[40]Dorner R, Goold J, Heaney L, et al. Quantum coherent contributions in biological electron transfer. Available online: https://arxiv.org/abs/1111.1646 (accessed on 6 December 2023).
[41]Dorner R, Goold J, Vedral V. Towards quantum simulations of biological information flow. Interface Focus. 2012; 2(4): 522-528. doi: 10.1098/rsfs.2011.0109
[42]Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology. 1970; 48(3): 443-453. doi: 10.1016/0022-2836(70)90057-4
[43]Smith TF, Waterman MS. Identification of common molecular subsequences. Journal of Molecular Biology. 1981; 147(1): 195-197. doi: 10.1016/0022-2836(81)90087-5
[44]Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010; 26(5): 589-595. doi: 10.1093/bioinformatics/btp698
[45]Dobin A, Davis CA, Schlesinger F, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29(1): 15-21. doi: 10.1093/bioinformatics/bts635
[46]Schuld M, Sinayskiy I, Petruccione F. An introduction to quantum machine learning. Contemporary Physics. 2015; 56(2): 172-185. doi: 10.1080/00107514.2014.964942
[47]Srinivasan S, Downey C, Boots B. Learning and inference in Hilbert space with quantum graphical models. In: Proceedings of the 32nd Conference on Neural Information Processing Systems (NeurIPS 2018); 2-8 December 2018; Montréal, Canada.
[48]Srinivasan S, Gordon G, Boots B. Learning hidden quantum Markov models. In: Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) 2018; 9-11 April 2018; Playa Blanca, Lanzarote, Canary Islands. Volume 84, pp. 1979-1987.
[49]Wang D, Liu S, Warrell J, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018; 362(6420): eaat8464. doi: 10.1126/science.aat8464
[50]Ward LD, Kellis M. Interpreting noncoding genetic variation in complex traits and human disease. Nature Biotechnology. 2012; 30(11): 1095-1106. doi: 10.1038/nbt.2422
[51]Gusev A, Ko A, Shi H, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nature Genetics. 2016; 48(3): 245-252. doi: 10.1038/ng.3506
[52]Pasaniuc B, Price AL. Dissecting the genetics of complex traits using summary association statistics. Nature Reviews Genetics. 2017; 18(2): 117-127. doi: 10.1038/nrg.2016.142
[53]Veis L, Višňák J, Fleig T, et al. Relativistic quantum chemistry on quantum computers. Physical Review A. 2012; 85(3): 030304. doi: 10.1103/PhysRevA.85.030304
[54]Lippard SJ, Berg JM. Principles of Bioinorganic Chemistry. University Science Books; 1994. 450p.
[55]Batra K, Zorn KM, Foil DH, et al. Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling. 2021; 61(6): 2641-2647. doi: 10.1021/acs.jcim.1c00166
[56]Lau B, Emani PS, Chapman J, et al. Insights from incorporating quantum computing into drug design workflows. Bioinformatics. 2023; 39(1): btac789. doi: 10.1093/bioinformatics/btac789
[57]Mustafa H, Morapakula SN, Jain P, Ganguly S. Variational quantum algorithms for chemical simulation and drug discovery. In: Proceedings of the 2022 International Conference on Trends in Quantum Computing and Emerging Business Technologies (TQCEBT); 13-15 October 2022; Pune, India. pp. 1-8. doi: 10.1109/TQCEBT54229.2022.10041453
[58]Robert A, Barkoutsos PK, Woerner S, Tavernelli I. Resource-efficient quantum algorithm for protein folding. npj Quantum Information. 2021; 7(1): 38. doi: 10.48550/arXiv.1908.02163
[59]Merali Z. AlphaFold developers win US$3-million breakthrough prize. Available online: https://www.nature.com/articles/d41586-022-02999-9 (accessed on 6 December 2023).
[60]Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science. 2012; 338(6110): 1042-1046. doi: 10.1126/science.1219021
[61]Dill KA. Theory for the folding and stability of globular proteins. Biochemistry. 1985; 24(6): 1501-1509. doi: 10.1021/bi00327a032
[62]Lau KF, Dill KA. A lattice statistical mechanics model of the conformational and sequence spaces of proteins. Macromolecules. 1989; 22(10): 3986-3997. doi: 10.1021/ma00200a030
[63]Miyazawa S, Jernigan RL. Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation. Macromolecules. 1985; 18(3): 534-552. doi: 10.1021/ma00145a039
[64]Dill KA, Bromberg S, Yue K, et al. Principles of protein folding—A perspective from simple exact models. Protein Science. 1995; 4(4): 561-602. doi: 10.1002/pro.5560040401
[65]Skolnick J, Kolinski A, Kihara D, et al. Ab initio protein structure prediction via a combination of threading, lattice folding, clustering, and structure refinement. Proteins: Structure, Function, and Bioinformatics. 2001; 45(S5): 149-156. doi: 10.1002/prot.1172
[66]Hoque T, Chetty M, Sattar A. Extended HP model for protein structure prediction. Journal of Computational Biology. 2009; 16(1): 85-103. doi: 10.1089/cmb.2008.0082
[67]Rohl CA, Strauss CE, Misura KM, Baker D. Protein structure prediction using Rosetta. In: Brand L, Johnson ML (editors). Methods in Enzymology. Academic Press; 2004. Volume 383. pp. 66-93. doi: 10.1016/S0076-6879(04)83004-0
[68]Marchand DJ, Noori M, Roberts A, et al. A variable neighbourhood descent heuristic for conformational search using a quantum annealer. Scientific Reports. 2019; 9(1): 13708. doi: 10.1038/s41598-019-47298-y
[69]Jackson M. The future of quantum drug discovery. Available online: https://medium.com/cambridge-quantum-computing/the-future-of-quantum-drug-discovery-909aa5140bff (accessed on 6 December 2023).
[70]Mulligan VK, Melo H, Merritt HI, et al. Designing peptides on a quantum computer. Available online: https://www.biorxiv.org/content/10.1101/752485v2.full.pdf (accessed on 6 December 2023).
[71]Liu CY, Goan HS. Hybrid gate-based and annealing quantum computing for large-size Ising problems. Available online: https://arxiv.org/abs/2208.03283 (accessed on 6 December 2023).
[72]Steane A. The ion trap quantum information processor. Applied Physics B. 1997; 64(6): 623-643. doi: 10.1007/s003400050225
[73]Devoret MH, Schoelkopf RJ. Superconducting circuits for quantum information: An outlook. Science. 2013; 339(6124): 1169-1174. doi: 10.1126/science.1231930
[74]O’brien JL. Optical quantum computing. Science. 2007; 318(5856): 1567-1570. doi: 10.1126/science.1142892
[75]Preskill J. Quantum computing in the NISQ era and beyond. Quantum. 2018; 2: 79. doi: 10.22331/q-2018-08-06-79
[76]Wittek P. Quantum Machine Learning: What Quantum Computing Means to Data Mining. Academic Press; 2014.
[77]Al-Rabadi AN. Reversible Logic Synthesis: From Fundamentals to Quantum Computing. Springer Berlin; 2012. 427p. doi: 10.1007/978-3-642-18853-4
[78]Biamonte J, Wittek P, Pancotti N, et al. Quantum machine learning. Nature. 2017; 549(7671): 195-202. doi: 10.1038/nature23474
[79]Li JA, Dong D, Wei Z, et al. Quantum reinforcement learning during human decision-making. Nature. Human Behaviour 2020; 4(3): 294-307. doi: 10.1038/s41562-019-0804-2
[80]Aïmeur E, Brassard G, Gambs S. Quantum speed-up for unsupervised learning. Machine Learning. 2013; 90: 261-287. doi: 10.1007/s10994-012-5316-5
[81]Li Z, Liu X, Xu N, Du J. Experimental realization of a quantum support vector machine. Physical Review Letters. 2015; 114(14): 140504. doi: 10.1103/PhysRevLett.114.140504
[82]Wan KH, Dahlsten O, Kristjánsson H, et al. Quantum generalisation of feedforward neural networks. npj Quantum Information. 2017; 3(1): 36. doi: 10.1038/s41534-017-0032-4
[83]Havlíček V, Córcoles AD, Temme K, et al. Supervised learning with quantum-enhanced feature spaces. Nature. 2019; 567(7747): 209-212. doi: 10.1038/s41586-019-0980-2
[84]Zhang Y, Ni Q. Recent advances in quantum machine learning. Quantum Engineering. 2020; 2(1): e34. doi: 10.1002/que2.34
[85]Albarrán-Arriagada F, Retamal JC, Solano E, Lamata L. Measurement-based adaptation protocol with quantum reinforcement learning. Physical Review A. 2018; 98(4): 042315. doi: 10.1103/PhysRevA.98.042315
[86]Cao Y, Romero J, Aspuru-Guzik A. Potential of quantum computing for drug discovery. IBM Journal of Research and Development. 2018; 62(6): 6:1-6:20. doi: 10.1147/JRD.2018.2888987
[87]Broughton M, Verdon G, McCourt T, et al. Tensorflow quantum: A software framework for quantum machine learning. Available online: https://arxiv.org/abs/2003.02989 (accessed on 7 December 2023).
[88]Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review. 1999; 41(2): 303-332. doi: 10.1137/S0036144598347011
Copyright (c) 2023 Ruby Srivastava
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it for any purpose, even commercially, under the condition that the authors are given credit. With this license, authors hold the copyright.