Remote sensing applications for effective fire disaster management plans: A review

  • Federico Ferrelli Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca B8000FWB, Argentina
Article ID: 133
Keywords: fires; climate change; global warming; remote sensing; disaster management

Abstract

The current context of climate change and imminent global warming is leading to changes in temperature and rainfall patterns worldwide that affect soil moisture, vegetation, and soil conditions, the incidence of dry and wet events, and consequently, the occurrence, intensity, and magnitude of fires. Fires harm people’s quality of life as they can disrupt economic activities and affect public health. Additionally, fires damage the environment, accelerating water and wind erosion processes, altering air quality, and contributing to ecosystem degradation. Pampas in Argentina was selected as an example to study fires at a regional scale using remote sensing techniques due to its status as one of the most fertile plains in the world and the country’s most densely populated area. The fires are carefully analyzed and described considering three stages: i) pre-fires, ii) fires, and iii) post-fires. Afterwards, fire disaster management plans are described to assess these events, reduce their impacts on society and biodiversity, and minimize the ecosystems’ recovery time. In this sense, this manuscript aims to review the relationships between climate change, global warming, and the occurrence of fires. Additionally, it proposes to analyze the potential of remote sensing in analyzing these events at a regional scale to provide the mechanisms and tools necessary for formulating fire disaster management plans.

References

[1]Pinsky E, Guerrero APS, Livingston R. Our house is on fire: Child and adolescent psychiatrists in the era of the climate crisis. Journal of the American Academy of Child and Adolescent Psychiatry. 2020; 59(5): 580-582. doi: 10.1016/j.jaac.2020.01.016

[2]Alexander B. Universities on Fire: Higher Education in the Climate Crisis. Johns Hopkins University Press; 2023.

[3]Harris N, Minnemeyer S, Sizer N, et al. With Latest Fires Crisis, Indonesia Surpasses Russia as World’S Fourth-Largest Emitter. World Resources Institute; 2015.

[4]Klein N. On Fire: The (Burning) Case for A Green New Deal. Simon & Schuster; 2019.

[5]Masson-Delmotte V, Moufouma-Okia W. Climate risks: Why each half-degree matters. Financial Stability Review, Banque de France. 2019; (23): 17-27.

[6]Zhou Z, Zhang L, Chen J, et al. Projecting global drought risk under various SSP-RCP scenarios. Earth’s Future. 2023; 11(5): e2022EF003420. doi: 10.1029/2022EF003420

[7]Xu R, Yu P, Abramson MJ, et al. Wildfires, global climate change, and human health. The New England Journal of Medicine. 2020; 383(22): 2173-2181. doi: 10.1056/NEJMsr2028985

[8]Ferrelli F, Brendel AS, Perillo GME, Piccolo MC. Warming signals emerging from the analysis of daily changes in extreme temperature events over Pampas (Argentina). Environmental Earth Sciences. 2021; 80: 422. doi: 10.1007/s12665-021-09721-4

[9]Negi MS, Kumar A. Assessment of increasing threat of forest fires in Uttarakhand, using remote sensing and GIS techniques. Global Journal of Advanced Research. 2016; 3(6): 457-468.

[10]Kanga S, Singh SK. Forest fire simulation modeling using remote sensing & GIS. International Journal of Advanced Research in Computer Science. 2017; 8(5): 326-332.

[11]Matin MA, Chitale VS, Murthy MSR, et al. Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system and historical fire data. International Journal of Wildland Fire. 2017; 26(4): 276-286. doi: 10.1071/WF16056

[12]Parajuli A, Gautam AP, Sharma SP, et al. Forest fire risk mapping using GIS and remote sensing in two major landscapes of Nepal. Geomatics, Natural Hazards and Risk. 2020; 11(1): 2569-2586. doi: 10.1080/19475705.2020.1853251

[13]Jin R, Lee KS. Investigation of forest fire characteristics in North Korea using remote sensing data and GIS. Remote Sensing. 2022; 14(22): 5836. doi: 10.3390/rs14225836

[14]Dutta S, Vaishali A, Khan S, Das S. Forest fire risk modeling using GIS and remote sensing in major landscapes of Himachal Pradesh. In: Chatterjee U, Akanwa AO, Kumar S, et al. (editors). Ecological Footprints of Climate Change. Springer; 2023. pp. 421-442.

[15]Teodoro AC, Duarte L. Chapter 10—The role of satellite remote sensing in natural disaster management. In: Nanotechnology-Based Smart Remote Sensing Networks for Disaster Prevention. Elsevier; 2022. pp. 189-216.

[16]Yu B, She J, Liu G, et al. Coal fire identification and state assessment by integrating multitemporal thermal infrared and InSAR remote sensing data: A case study of Midong District, Urumqi, China. ISPRS Journal of Photogrammetry and Remote Sensing. 2022; 190: 144-164. doi: 10.1016/j.isprsjprs.2022.06.007

[17]Higa L, Marcato J, Rodrigues T, et al. Active fire mapping on Brazilian Pantanal based on deep learning and CBERS 04A imagery. Remote Sensing. 2022; 14(3): 688. doi: 10.3390/rs14030688

[18]Kureel N, Sarup J, Shafique M, et al. Modelling vegetation health and stress using hypersepctral remote sensing data. Modeling Earth Systems and Environment. 2022; 8: 733-748. doi: 10.1007/s40808-021-01113-8

[19]Camprubí ÀC, González-Moreno P, de Dios VR. Live fuel moisture content mapping in the Mediterranean basin using random forests and combining MODIS spectral and thermal data. Remote Sensing. 2022; 14(13): 3162. doi: 10.3390/rs14133162

[20]Hussain S, Qin S, Nasim W, et al. Monitoring the dynamic changes in vegetation cover using spatio-temporal remote sensing data from 1984 to 2020. Atmosphere. 2021; 13(10): 1609. doi: 10.3390/atmos13101609

[21]Attiya AA, Jones BG. Impact of smoke plumes transport on air quality in Sydney during extensive bushfires (2019) in New South Wales, Australia using remote sensing and ground data. Remote Sensing. 2022; 14(21): 5552. doi: 10.3390/rs14215552

[22]Kurbanov E, Vorobev O, Lezhnin S, et al. Remote sensing of forest burnt area, burn severity, and post-fire recovery: A review. Remote Sensing. 2022; 14(19): 4714. doi: 10.3390/rs14194714

[23]Avetisyan D, Velizarova E, Filchev L. Post-fire forest vegetation state monitoring through satellite remote sensing and in situ data. Remote Sensing. 2022; 14(24): 6266. doi: 10.3390/rs14246266

[24]Jin T, Hu X, Liu B, et al. Susceptibility prediction of post-fire debris flows in Xichang, China, using a logistic regression model from a spatiotemporal perspective. Remote Sensing. 2022; 14(6): 1306. doi: 10.3390/rs14061306

[25]Kasyap VL, Sumathi D, Alluri K, et al. Early detection of forest fire using mixed learning techniques and UAV. Computational Intelligence and Neuroscience. 2022; 2022: 3170244. doi: 10.1155/2022/3170244

[26]Farooq M, Gazali S, Dada M, et al. Forest fire alert system of India with a special reference to fire vulnerability assessment of the UT of Jammu and Kashmir. In: Kanga S, Meraj G, Farooq M, et al. (editors). Disaster Management in the Complex Himalayan Terrains. Springer; 2022. pp. 155-167.

[27]Li XY, Jin HJ, Wang HW, et al. Influences of forest fires on the permafrost environment: A review. Advances in Climate Change Research. 2021; 12(1): 48-65. doi: 10.1016/j.accre.2021.01.001

[28]Gamze ÖNCÜ, Çorumluoğlu Ö. Assessment of forest fire damage severity by remote sensing techniques. International Journal of Environment and Geoinformatics. 2023; 10(2): 151-158. doi: 10.30897/ijegeo.1089014

[29]Yilmaz OS, Acar U, Sanli FB, et al. Mapping burn severity and monitoring CO content in Türkiye’s 2021 Wildfires, using Sentinel-2 and Sentinel-5P satellite data on the GEE platform. Earth Science Informatics. 2023; 16(1): 221-240. doi: 10.1007/s12145-023-00933-9

[30]DaSilva MD, Bruce D, Hesp PA, et al. Post-wildfire coastal dunefield response using photogrammetry and satellite indices. Earth Surface Processes and Landforms. 2023; 48(9): 1845-1868. doi: 10.1002/esp.5591

[31]Senande-Rivera M, Insua-Costa D, Miguez-Macho G. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nature Communications. 2022; 13(1): 1208. doi: 10.1038/s41467-022-28835-2

[32]Rao KH, Rao PSS. Disaster Management. Serials Publications; 2008.

[33]Kathleen Geale S. The ethics of disaster management. Disaster Prevention and Management. 2012; 21(4): 445-462. doi: 10.1108/09653561211256152

[34]Oktari RS, Munadi K, Idroes R, Sofyan H. Knowledge management practices in disaster management: Systematic review. International Journal of Disaster Risk Reduction. 2020; 51: 101881. doi: 10.1016/j.ijdrr.2020.101881

[35]Wahyuningtyas N, Tanjung A, Idris I, Dewi K. Disaster mitigation on cultural tourism in Lombok, Indonesia. GeoJournal of Tourism and Geosites. 2019; 27(4): 1227-1235. doi: 10.30892/gtg.27409-428

[36]Sun Q, Miao C, Hanel M, et al. Global heat stress on health, wildfires, and agricultural crops under different levels of climate warming. Environment International. 2019; 128: 125-136. doi: 10.1016/j.envint.2019.04.025

[37]Al Kurdi OF. A critical comparative review of emergency and disaster management in the Arab world. Journal of Business and Socioeconomic Development. 2021; 1(1): 24-46. doi: 10.1108/JBSED-02-2021-0021

[38]Sarker MNI, Peng Y, Yiran C, Shouse RC. Disaster resilience through big data: Way to environmental sustainability. International Journal of Disaster Risk Reduction. 2020; 51: 101769. doi: 10.1016/j.ijdrr.2020.101769

[39]Rehman J, Sohaib O, Asif M, Pradhan B. Applying systems thinking to flood disaster management for a sustainable development. International Journal of Disaster Risk Reduction. 2019; 36: 101101. doi: 10.1016/j.ijdrr.2019.101101

[40]Damaševičius R, Bacanin N, Misra S. From sensors to safety: Internet of emergency services (IoES) for emergency response and disaster management. Journal of Sensor and Actuator Networks. 2023; 12(3): 41. doi: 10.3390/jsan12030041

[41]Schumann RL III, Mockrin M, Syphard AD, et al. Wildfire recovery as a “hot moment” for creating fire-adapted communities. International Journal of Disaster Risk Reduction. 2020; 42: 101354. doi: 10.1016/j.ijdrr.2019.101354

[42]Khan A, Gupta S, Gupta SK. Multi-hazard disaster studies: Monitoring, detection, recovery, and management, based on emerging technologies and optimal techniques. International Journal of Disaster Risk Reduction. 2020; 47: 101642. doi: 10.1016/j.ijdrr.2020.101642

[43]Matsuura S, Razak KA. Exploring transdisciplinary approaches to facilitate disaster risk reduction. Disaster Prevention and Management. 2019; 28(6): 817-830. doi: 10.1108/DPM-09-2019-0289

[44]Abid SK, Sulaiman N, Chan S, et al. Toward an integrated disaster management approach: How artificial intelligence can boost disaster management. Sustainability. 2021; 13(22): 12560. doi: 10.3390/su132212560

[45]Siders AR. Adaptive capacity to climate change: A synthesis of concepts, methods, and findings in a fragmented field. WIREs Climate Change. 2019; 10(3): e573. doi: 10.1002/wcc.573

[46]Simpson NP, Mach KJ, Constable AC, et al. A framework for complex climate change risk assessment. One Earth. 2021; 4(4): 489-501. doi: 10.1016/j.oneear.2021.03.005

[47]van Ginkel KCH, Botzen WJW, Haasnoot M, et al. Climate change induced socioeconomic tipping points: Review and stakeholder consultation for policy relevant research. Environmental Research Letters. 2020; 15(2): 023001. doi: 10.1088/1748-9326/ab6395

[48]Dino IG, Akgül CM. Impact of climate change on the existing residential building stock in Turkey: An analysis on energy use, greenhouse gas emissions and occupant comfort. Renewable Energy. 2019; 141: 828-846. doi: 10.1016/j.renene.2019.03.150

[49]Allen M, Antwi-Agyei P, Aragon-Durand F, et al. Technical Summary: Global Warming of 1.5 °C. Intergovernmental Panel on Climate Change; 2019.

[50]Mikhaylov A, Moiseev N, Aleshin K, Burkhardt T. Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues. 2020; 7(4): 2897-2913. doi: 10.9770/jesi.2020.7.4(21)

[51]Toimil A, Losada IJ, Nicholls RJ, et al. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coastal Engineering. 2020; 156: 103611. doi: 10.1016/j.coastaleng.2019.103611

[52]Glasser R. The climate change imperative to transform disaster risk management. International Journal of Disaster Risk Science. 2020; 11(2): 152-154. doi: 10.1007/s13753-020-00248-z

[53]Bustamante MMC, Silva JS, Scariot A, et al. Ecological restoration as a strategy for mitigating and adapting to climate change: Lessons and challenges from Brazil. Mitigation and Adaptation Strategies for Global Change. 2019; 24: 1249-1270. doi: 10.1007/s11027-018-9837-5

[54]Seddon N. Harnessing the potential of nature-based solutions for mitigating and adapting to climate change. Science. 2022; 376(6600): 1410-1416. doi: 10.1126/science.abn9668

[55]Wang B, Zhang M, Wei J, et al. Changes in extreme events of temperature and precipitation over Xinjiang, northwest China, during 1960-2009. Quaternary International. 2013; 298: 141-151. doi: 10.1016/j.quaint.2012.09.010

[56]Worku G, Teferi E, Bantider A, Dile Y. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theoretical and Applied Climatology. 2019; 135: 839-854. doi: 10.1007/s00704-018-2412-x

[57]Sun W, Bocchini P, Davison BD. Applications of artificial intelligence for disaster management. Natural Hazards. 2020; 103(3): 2631-2689. doi: 10.1007/s11069-020-04124-3

[58]Abram NJ, Henley BJ, Gupta AS, et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Communications Earth & Environment. 2021; 2(1): 8. doi: 10.1038/s43247-020-00065-8

[59]Greve P, Roderick ML, Ukkola AM, Wada Y. The aridity index under global warming. Environmental Research Letters. 2019; 14(12): 124006. doi: 10.1088/1748-9326/ab5046

[60]Ostad-Ali-Askari K, Kharazi HG, Shayannejad M, Zareian MJ. Effect of climate change on precipitation patterns in an arid region using GCM models: Case study of Isfahan-Borkhar plain. Natural Hazards Review. 2020; 21(2): 04020006. doi: 10.1061/(ASCE)NH.1527-6996.0000367

[61]Almazroui M, Saeed F, Saeed S, et al. Projected change in temperature and precipitation over Africa from CMIP6. Earth Systems and Environment. 2020; 4: 455-475. doi: 10.1007/s41748-020-00161-x

[62]Kim SK, Shin J, An SI, et al. Widespread irreversible changes in surface temperature and precipitation in response to CO2 forcing. Nature Climate Change. 2022; 12(9): 834-840. doi: 10.1038/s41558-022-01452-z

[63]Dantas LG, dos Santos CAC, Santos CAG, et al. Future changes in temperature and precipitation over northeastern Brazil by CMIP6 model. Water. 2022; 14(24): 4118. doi: 10.3390/w14244118

[64]Viloria JA, Olivares BO, García P, et al. Mapping projected variations of temperature and precipitation due to climate change in Venezuela. Hydrology. 2023; 10(4): 96. doi: 10.3390/hydrology10040096

[65]Dittrich R, McCallum S. How to measure the economic health cost of wildfires—A systematic review of the literature for northern America. International Journal of Wildland Fire. 2020; 29(11): 961-973. doi: 10.1071/WF19091

[66]Hunter ME, Robles MD. Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison. Forest Ecology and Management. 2020; 475: 118435. doi: 10.1016/j.foreco.2020.118435

[67]Nolan RH, Anderson LO, Poulter B, Varner JM. Increasing threat of wildfires: The year 2020 in perspective: A global ecology and biogeography special issue. Global Ecology and Biogeography. 2022; 31(10): 1898-1905. doi: 10.1111/geb.13588

[68]Prosperi P, Bloise M, Tubiello FN, et al. New estimates of greenhouse gas emissions from biomass burning and peat fires using MODIS Collection 6 burned areas. Climatic Change. 2020; 161: 415-432. doi: 10.1007/s10584-020-02654-0

[69]Aliaga VS, Ferrelli F, Piccolo MC. Regionalization of climate over the Argentine Pampas. International Journal of Climatology. 2017; 37(S1): 1237-1247. doi: 10.1002/joc.5079

[70]Scian B, Labraga JC, Reimers W, Frumento O. Characteristics of large-scale atmospheric circulation related to extreme monthly rainfall anomalies in the Pampa Region, Argentina, under non-ENSO conditions. Theoretical and Applied Climatology. 2006; 85(1-2): 89-106. doi: 10.1007/s00704-005-0182-8

[71]Scian B, Pierini J. Variability and trends of extreme dry and wet seasonal precipitation in Argentina. A retrospective analysis. Atmósfera. 2013; 26(1): 3-26. doi: 10.1016/S0187-6236

[72]Ferrelli F, Brendel AS, Piccolo MC, Perillo GME. Assessment of precipitation trends in pampas region (Argentina) during the period 1960-2018 (Spanish). RA’EGA. 2021; 51: 41-56. doi: 10.5380/raega.v51i0.69962

[73]Barros VR, Boninsegna JA, Camilloni IA, et al. Climate change in Argentina: Trends, projections, impacts and adaptation. WIREs Climate Change. 2015; 6(2): 151-169. doi: 10.1002/wcc.316

[74]Garay DD. Rural and Forest Fires: The Importance of Remote Sensing and Geographic Information Systems (Spanish). Estación Experimental Agropecuaria La Rioja, INTA; 2020.

[75]Delegido J, Pezzola A, Casella A, et al. Fire severity estimation in southern of the Buenos Aires province, Argentina, using Sentinel-2 and its comparison with Landsat-8 (Spanish). Revista de Teledetección. 2018; 51: 47-60. doi: 10.4995/raet.2018.8934

[76]Ferrelli F, Casado A. Relationship between climatic variability and fires in the southern Pampas region (Spanish). In: Proceedings of the XIV Jornadas Nacionales de Geografía Física; 23-27 May 2022; Corrientes, Argentina.

[77]Ferrelli F, Brendel AS, Aliaga VS, et al. Climate regionalization and trends of climate based on daily temperature and precipitation extremes in the south of the Pampas (Argentina). Geographical Research Letters. 2019; 45(1): 393-416. doi: 10.18172/cig.3707

[78]Fick SE, Hijmans RJ. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 2017; 37(12): 4302-4315. doi: 10.1002/joc.5086

[79]Angeles G. Evaluation of Potential Fire Risk in A Semi-Natural Area (Spanish). Villa Ventana y Sectores Adyacentes Universidad Nacional del Sur Press; 1995.

[80]Brendel AS, Ferrelli F, Piccolo MC, Perillo GME. Assessment of the effectiveness of supervised and unsupervised methods: Maximizing land-cover classification accuracy with spectral indices data. Journal of Applied Remote Sensing. 2019; 13(1): 014503. doi: 10.1117/1.JRS.13.014503

[81]Herrera LP, Hermida VG, Martínez GA, et al. Remote sensing assessment of Paspalum quadrifarium grasslands in the flooding Pampa, Argentina. Rangeland Ecology & Management. 2005; 58(4): 406-412. doi: 10.2111/1551-5028(2005)058[0406:RSAOPQ]2.0.CO;2

[82]Lara B, Gandini M. Quantifying the land cover changes and fragmentation patterns in the Argentina Pampas, in the last 37 years (1974-2011). GeoFocus. International Review of Geographical Information Science and Technology. 2014; (14): 163-180.

[83]Sánchez M, Baldassini P, Fischer MdlÁ, et al. Where, when and how large fires occur in the province of La Pampa, Argentina: A characterization based on remote sensing (Spanish). Ecología Austral. 2023; 33(1): 211-228. doi: 10.25260/EA.23.33.1.0.1972

[84]Khakim MYN, Bama AA, Yustian I, et al. Peatland subsidence and vegetation cover degradation as impacts of the 2015 El niño event revealed by Sentinel-1A SAR data. International Journal of Applied Earth Observation and Geoinformation. 2020; 84: 101953. doi: 10.1016/j.jag.2019.101953

[85]Junaidi SN, Khalid N, Othman AN, et al. Analysis of the relationship between forest fire and land surface temperature using Landsat 8 OLI/TIRS imagery. In: Proceedings of the IOP Conference Series: Earth and Environmental Science; 23-24 March 2021; Shah Alam, Malaysia. pp. 012005.

[86]Abatzoglou JT, Williams AP, Barbero R. Global emergence of anthropogenic climate change in fire weather indices. Geophysical Research Letters. 2019; 46(1): 326-336. doi: 10.1029/2018GL080959

[87]Shen X, Liu B, Jiang M, et al. Spatiotemporal change of marsh vegetation and its response to climate change in China from 2000 to 2019. Journal of Geophysical Research: Biogeosciences. 2021; 126(2): e2020JG006154. doi: 10.1029/2020JG006154

[88]Cardil A, Rodrigues M, Ramirez J, et al. Coupled effects of climate teleconnections on drought, Santa Ana winds and wildfires in southern California. Science of the Total Environment. 2021; 765: 142788. doi: 10.1016/j.scitotenv.2020.142788

[89]Brown EK, Wang J, Feng Y. US wildfire potential: A historical view and future projection using high-resolution climate data. Environmental Research Letters. 2021; 16(3): 034060. doi: 10.1088/1748-9326/aba868

[90]Richardson D, Black AS, Irving D, et al. Global increase in wildfire potential from compound fire weather and drought. npj Climate and Atmospheric Science. 2022; 5(1): 23. doi: 10.1038/s41612-022-00248-4

[91]Brendel A, Bohn VY, Piccolo MC. Climatic variability effects on the vegetation state and water coverage in a watershed of temperate climate (Argentina). Anuãrio do Instituto de Geociencias. 2017; 40: 5-16. doi: 10.11137/2017_2_05_16

[92]Vicente-Serrano SM, Beguería S, López-Moreno JI. A multi-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate. 2010; 23(7): 1696-1718. doi: 10.1175/2009JCLI2909.1

[93]Lasslop G, Coppola AI, Voulgarakis A, et al. Influence of fire on the carbon cycle and climate. Current Climate Change Reports. 2019; 5: 112-123. doi: 10.1007/s40641-019-00128-9

[94]Sawalha IH. A contemporary perspective on the disaster management cycle. Foresight. 2020; 2(4): 469-482. doi: 10.1108/FS-11-2019-0097

[95]Carmen E, Fazey I, Ross H, et al. Building community resilience in a context of climate change: The role of social capital. Ambio. 2022; 51(6): 1371-1387. doi: 10.1007/s13280-021-01678-9

[96]Finney MA. The wildland fire system and challenges for engineering. Fire Safety Journal. 2021; 120: 103085. doi: 10.1016/j.firesaf.2020.103085

[97]Ishiwatari M. Institutional coordination of disaster management: Engaging national and local governments in Japan. Natural Hazards Review. 2021; 22(1): 04020059. doi: 10.1061/(ASCE)NH.1527-6996.0000423

[98]Ebi KL, Vanos J, Baldwin JW, et al. Extreme weather and climate change: Population health and health system implications. Annual Review of Public Health. 2021; 42(1): 293-315. doi: 10.1146/annurev-publhealth-012420-105026

[99]Janizadeh S, Avand M, Jaafari A, et al. Prediction success of machine learning methods for flash flood susceptibility mapping in the Tafresh Watershed, Iran. Sustainability. 2019; 11(19): 5426. doi: 10.3390/su11195426

[100]Van Hoang T, Chou TY, Fang YM, et al. Mapping forest fire risk and development of early warning system for NW Vietnam using AHP and MCA/GIS methods. Applied Sciences. 2020; 10(12): 4348. doi: 10.3390/app10124348

[101]Sufri S, Dwirahmadi F, Phung D, et al. A systematic review of community engagement (CE) in disaster early warning systems (EWSs). Progress in Disaster Science. 2020; 5: 100058. doi: 10.1016/j.pdisas.2019.100058

[102]Himoto K. Conceptual framework for quantifying fire resilience—A new perspective on fire safety performance of buildings. Fire Safety Journal. 2021; 120: 103052. doi: 10.1016/j.firesaf.2020.103052

[103]Oliveira MJSP, Pinheiro P. Factors and barriers to tacit knowledge sharing in non-profit organizations—A case study of volunteer firefighters in Portugal. Journal of the Knowledge Economy. 2021; 12: 1294-1313. doi: 10.1007/s13132-020-00665-x

[104]Lohmander P. Optimization of forestry, infrastructure and fire management. Caspian Journal of Environmental Sciences. 2021; 19(2): 287-316. doi: 10.22124/CJES.2021.4746

[105]Stephens SL, Battaglia MA, Churchill DJ, et al. Forest restoration and fuels reduction: Convergent or divergent? Bioscience. 2021; 71(1): 85-101. doi: 10.1093/biosci/biaa134

[106]Vaverková MD, Winkler J, Uldrijan D, et al. Fire hazard associated with different types of photovoltaic power plants: Effect of vegetation management. Renewable and Sustainable Energy Reviews. 2022; 162: 112491. doi: 10.1016/j.rser.2022.112491

[107]McWethy DB, Schoennagel T, Higuera PE, et al. Rethinking resilience to wildfire. Nature Sustainability. 2019; 2(9): 797-804. doi: 10.1038/s41893-019-0353-8

[108]Steel ZL, Foster D, Coppoletta M, et al. Ecological resilience and vegetation transition in the face of two successive large wildfires. Journal of Ecology. 2021; 109(9): 3340-3355. doi: 10.1111/1365-2745.13764

[109]Cartier EA, Taylor LL. Living in a wildfire: The relationship between crisis management and community resilience in a tourism-based destination. Tourism Management Perspectives. 2020; 34: 100635. doi: 10.1016/j.tmp.2020.100635

[110]Gil-Romera G, Adolf C, Benito BM, et al. Long-term fire resilience of the Ericaceous Belt, Bale Mountains, Ethiopia. Biology Letters. 2019; 15(7): 20190357. doi: 10.1098/rsbl.2019.0357

[111]Robertson T, Docherty P, Millar F, et al. Theory and practice of building community resilience to extreme events. International Journal of Disaster Risk Reduction. 2021; 59: 102253. doi: 10.1016/j.ijdrr.2021.102253

Published
2023-10-23
How to Cite
Ferrelli, F. (2023). Remote sensing applications for effective fire disaster management plans: A review. Information System and Smart City, 3(1), 133. https://doi.org/10.59400/issc.v3i1.133
Section
Review