Money market insights in China: Evidence from visual analytics approach
Abstract
This research employs visual analytics approaches to demystify the complex dynamics of China’s money market, spanning from 1984 to 2020. Our objective is to transform intricate financial data into intuitive visual representations, thereby enhancing understanding and decision-making. We utilize advanced visual analytics techniques to analyze key aspects like money supply, deposits, loans, and foreign exchange. The study reveals significant trends and insights, contributing to a more comprehensive understanding of financial dynamics in China. These findings serve as valuable tools for economists and policymakers, guiding more informed decisions in financial governance.
References
[1]Beniger JR, Robyn DL. Quantitative Graphics in Statistics: A Brief History. The American Statistician. 1978; 32(1): 1-11. doi: 10.1080/00031305.1978.10479235
[2]Rothe J. Economics and Computation. Springer Berlin Heidelberg; 2016. doi: 10.1007/978-3-662-47904-9
[3]Nkoro E, Uko AK. Autoregressive Distributed Lag (ARDL) cointegration technique: application and interpretation. Journal of Statistical and Econometric methods. 2016; 5(4): 63-91.
[4]Kurecic P, Kokotovic F. The Relevance of Political Stability on FDI: A VAR Analysis and ARDL Models for Selected Small, Developed, and Instability Threatened Economies. Economies. 2017; 5(3): 22. doi: 10.3390/economies5030022
[5]Grinstein UMFGG, Wierse A. Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann; 2002.
[6]Brodlie KW, Gallop JR, Osland CD, et al. (editors). Scientific Visualization: Techniques and Applications. Springer Science & Business Media; 2012.
[7]Smits AJ. Flow Visualization: Techniques and Examples. World Scientific; 2012.
[8]Munzner T. A Nested Model for Visualization Design and Validation. IEEE Transactions on Visualization and Computer Graphics. 2009; 15(6): 921-928. doi: 10.1109/tvcg.2009.111
[9]Thomas JJ, Cook KA. Illuminating the Path: The Research and Development Agenda for Visual Analytics. IEEE Computer Society Press; 2005.
[10]Cheng S, Mueller K. The Data Context Map: Fusing Data and Attributes into a Unified Display. IEEE Transactions on Visualization and Computer Graphics. 2016; 22(1): 121-130. doi: 10.1109/tvcg.2015.2467552
[11]Huang T, Cheng S, Li S, Zhang Z. High-dimensional Clustering onto Hamiltonian Cycle. ICML. 2023; 13791-13813.
[12]Ko S, Cho I, Afzal S, et al. A Survey on Visual Analysis Approaches for Financial Data. Computer Graphics Forum. 2016; 35(3): 599-617. doi: 10.1111/cgf.12931
[13]Ziegler H, Jenny M, Gruse T, et al. Visual market sector analysis for financial time series data. In: Proceedings of the 2010 IEEE Symposium on Visual Analytics Science and Technology; 25-26 October 2010; Salt Lake City, UT, USA. pp. 83-90. doi: 10.1109/vast.2010.5652530
[14]Leite RA, Gschwandtner T, Miksch S, et al. EVA: Visual Analytics to Identify Fraudulent Events. IEEE Transactions on Visualization and Computer Graphics. 2018; 24(1): 330-339. doi: 10.1109/tvcg.2017.2744758
[15]Nadini M, Alessandretti L, Di Giacinto F, et al. Mapping the NFT revolution: market trends, trade networks, and visual features. Scientific Reports. 2021; 11(1). doi: 10.1038/s41598-021-00053-8
[16]Guo R, Cheng L, Li J, et al. A Survey of Learning Causality with Data. ACM Computing Surveys. 2020; 53(4): 1-37. doi: 10.1145/3397269
Copyright (c) 2024 Qisheng Guo, Xiaoming Li, Qiyuan Li, Shenghui Cheng
This work is licensed under a Creative Commons Attribution 4.0 International License.