The study of ideal/defected graphene nanosheet roughness after atomic deposition process: Molecular dynamics simulation

  • Sedigheh Bigom Hoseini Department of Physics, College of Sciences, Shiraz University, Shiraz, 71946-84334, Iran
  • Roozbeh Sabetvand Department of Energy Engineering and Physics, Faculty of Condensed Matter Physics, Amirkabir University of Technology, Tehran, 159163-4311, Iran
Keywords: graphene; atomic deposition; vacancy defect; molecular dynamics; temperature effect; pressure effect

Abstract

In this work, molecular dynamics (MD) approach was performed to study the surface roughness of ideal/defected graphene nanosheet after carbon atoms deposition at various temperatures and pressures. In our calculations, the atomic interactions of nanostructures are based on TERSOFF and Lennard-Jones potential functions. The results show that the temperature of simulated structure is an important parameter in atomic deposition process and initial temperature enlarges, intensifies atomic deposition ratio. Numerically, by temperature increasing to 15 K, the surface roughness amplitude increase to 0.98 Å/0.83 Å after atomic deposition in ideal/defected structure. The roughness power in MD simulations converges to 0.64/0.55 in ideal/defected sample at maximum temperature. Furthermore, the pressure effects on dynamical behavior of simulated samples were reported in our study. We conclude that, by increasing initial pressure from 0 to 2 bar, the surface roughness amplitude in ideal/defected atomic arrangement increases to 1.01 Å/0.84 Å after deposition process and the roughness power of simulated structures reaches to larger value. Numerically, by initial pressure setting at 2 bar, the roughness power value converged to 0.72/0.56 in ideal/defected graphene. Reported numeric results in various temperature and pressures predicted the initial condition can be manipulated the atomic deposition process in ideal/defected graphene nanostructures.

References

Geim AK. Graphene: Status and Prospects. Science. 2009, 324(5934): 1530-1534. doi: 10.1126/science.1158877

Lee C, Wei X, Kysar JW, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321(5887): 385-388. doi: 10.1126/science.1157996

Ansari R, Mirnezhad M, Rouhi H. Mechanical properties of fully hydrogenated graphene sheets. Solid State Communications. 2015, 201: 1-4. doi: 10.1016/j.ssc.2014.10.002

Georgantzinos SK, Giannopoulos GI, Anifantis NK. Numerical investigation of elastic mechanical properties of graphene structures. Materials & Design. 2010, 31(10): 4646-4654. doi: 10.1016/j.matdes.2010.05.036

Gao Y, Hao P. Mechanical properties of monolayer graphene under tensile and compressive loading. Physica E: Low-dimensional Systems and Nanostructures. 2009, 41(8): 1561-1566. doi: 10.1016/j.physe.2009.04.033

Bu H, Chen Y, Zou M, et al. Atomistic simulations of mechanical properties of graphene nanoribbons. Physics Letters A. 2009, 373(37): 3359-3362. doi: 10.1016/j.physleta.2009.07.048

Memarian F, Fereidoon A, Darvish Ganji M. Graphene Young’s modulus: Molecular mechanics and DFT treatments. Superlattices and Microstructures. 2015, 85: 348-356. doi: 10.1016/j.spmi.2015.06.001

Vervuurt RHJ, Kessels WMM (Erwin), Bol AA. Atomic Layer Deposition for Graphene Device Integration. Advanced Materials Interfaces. 2017, 4(18). doi: 10.1002/admi.201700232

Zhang Y, Ren W, Jiang Z, et al. Low-temperature remote plasma-enhanced atomic layer deposition of graphene and characterization of its atomic-level structure. J Mater Chem C. 2014, 2(36): 7570-7574. doi: 10.1039/c4tc00849a

Neek-Amal M, Asgari R, Rahimi Tabar MR. The formation of atomic nanoclusters on graphene sheets. Nanotechnology. 2009, 20(13): 135602. doi: 10.1088/0957-4484/20/13/135602

Wang X, Tabakman SM, Dai H. Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene. Journal of the American Chemical Society. 2008, 130(26): 8152-8153. doi: 10.1021/ja8023059

Xuan Y, Wu YQ, Shen T, et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Applied Physics Letters. 2008, 92(1). doi: 10.1063/1.2828338

Sun X, Xie M, Wang G, et al. Atomic Layer Deposition of TiO2on Graphene for Supercapacitors. Journal of The Electrochemical Society. 2012, 159(4): A364-A369. doi: 10.1149/2.025204jes

Hong J, Hu Z, Probert M, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications. 2015, 6(1). doi: 10.1038/ncomms7293

Ehrhart P. Properties and interactions of atomic defects in metals and alloys. In: Landolt-Börnstein, New Series III, Volume 25. Springer, Berlin. 1991.

Siegel RW. Vacancy concentrations in metals. Journal of Nuclear Materials. 1978, 69-70: 117-146. doi: 10.1016/0022-3115(78)90240-4

Jolfaei NA, Jolfaei NA, Hekmatifar M, et al. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Computer Methods and Programs in Biomedicine. 2020, 185: 105169. doi: 10.1016/j.cmpb.2019.105169

Pishkenari HN, Afsharmanesh B, Tajaddodianfar F. Continuum models calibrated with atomistic simulations for the transverse vibrations of silicon nanowires. International Journal of Engineering Science. 2016, 100: 8-24. doi: 10.1016/j.ijengsci.2015.11.005

Toghraie D, Hekmatifar M, Salehipour Y, et al. Molecular dynamics simulation of Couette and Poiseuille Water-Copper nanofluid flows in rough and smooth nanochannels with different roughness configurations. Chemical Physics. 2019, 527: 110505. doi: 10.1016/j.chemphys.2019.110505

Albooyeh AR, Dadrasi A, Mashhadzadeh AH. Effect of point defects and low-density carbon-doped on mechanical properties of BNNTs: A molecular dynamics study. Materials Chemistry and Physics. 2020, 239: 122107. doi: 10.1016/j.matchemphys.2019.122107

Zhou YP, Jiang JW. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential. Scientific Reports. 2017, 7(1). doi: 10.1038/srep45516

Board JA, Causey JW, Leathrum JF, et al. Accelerated molecular dynamics simulation with the parallel fast multipole algorithm. Chemical Physics Letters. 1992, 198(1-2): 89-94. doi: 10.1016/0009-2614(92)90053-p

Rapaport DC. The Art of Molecular Dynamics Simulation. Published online April 1, 2004. doi: 10.1017/cbo9780511816581

Alder BJ, Wainwright TE. Studies in Molecular Dynamics. I. General Method. The Journal of Chemical Physics. 1959, 31(2): 459-466. doi: 10.1063/1.1730376

Rahman A. Correlations in the Motion of Atoms in Liquid Argon. Physical Review. 1964, 136(2A): A405-A411. doi: 10.1103/physrev.136.a405

Gibson JB, Goland AN, Milgram M, et al. Dynamics of Radiation Damage. Physical Review. 1960, 120(4): 1229-1253. doi: 10.1103/physrev.120.1229

Plimpton SJ, Thompson AP. Computational aspects of many-body potentials. MRS Bulletin. 2012, 37(5): 513-521. doi: 10.1557/mrs.2012.96

Plimpton SJ, Pollock R, Stevens M. In: Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN 223-245. 1997.

Brown WM, Wang P, Plimpton SJ, et al. Implementing molecular dynamics on hybrid high performance computers—Short range forces. Computer Physics Communications. 2011, 182(4): 898-911. doi: 10.1016/j.cpc.2010.12.021

Parks ML, Lehoucq RB, Plimpton SJ, et al. Implementing peridynamics within a molecular dynamics code. Computer Physics Communications. 2008, 179(11): 777-783. doi: 10.1016/j.cpc.2008.06.011

Mukherjee RM, Crozier PS, Plimpton SJ, et al. Substructured molecular dynamics using multibody dynamics algorithms. International Journal of Non-Linear Mechanics. 2008, 43(10): 1040-1055. doi: 10.1016/j.ijnonlinmec.2008.04.003

Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B. 1989, 39(8): 5566-5568. doi: 10.1103/physrevb.39.5566

Tersoff J. New empirical approach for the structure and energy of covalent systems. Physical Review B. 1988, 37(12): 6991-7000. doi: 10.1103/physrevb.37.6991

Rappe AK, Casewit CJ, Colwell KS, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society. 1992, 114(25): 10024-10035. doi: 10.1021/ja00051a040

Verlet L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review. 1967, 159(1): 98-103. doi: 10.1103/physrev.159.98

Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Second-Order Conservative Equations. Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge University Press. 2007.

Nosé S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics. 1984, 81(1): 511-519. doi: 10.1063/1.447334

Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A. 1985, 31(3): 1695-1697. doi: 10.1103/physreva.31.1695

Published
2024-04-11
How to Cite
Hoseini, S. B., & Sabetvand, R. (2024). The study of ideal/defected graphene nanosheet roughness after atomic deposition process: Molecular dynamics simulation. Nano Carbons, 2(1), 299. https://doi.org/10.59400/n-c.v2i1.299
Section
Original Research Article