The study of ideal/defected graphene nanosheet roughness after atomic deposition process: Molecular dynamics simulation
Abstract
In this work, molecular dynamics (MD) approach was performed to study the surface roughness of ideal/defected graphene nanosheet after carbon atoms deposition at various temperatures and pressures. In our calculations, the atomic interactions of nanostructures are based on TERSOFF and Lennard-Jones potential functions. The results show that the temperature of simulated structure is an important parameter in atomic deposition process and initial temperature enlarges, intensifies atomic deposition ratio. Numerically, by temperature increasing to 15 K, the surface roughness amplitude increase to 0.98 Å/0.83 Å after atomic deposition in ideal/defected structure. The roughness power in MD simulations converges to 0.64/0.55 in ideal/defected sample at maximum temperature. Furthermore, the pressure effects on dynamical behavior of simulated samples were reported in our study. We conclude that, by increasing initial pressure from 0 to 2 bar, the surface roughness amplitude in ideal/defected atomic arrangement increases to 1.01 Å/0.84 Å after deposition process and the roughness power of simulated structures reaches to larger value. Numerically, by initial pressure setting at 2 bar, the roughness power value converged to 0.72/0.56 in ideal/defected graphene. Reported numeric results in various temperature and pressures predicted the initial condition can be manipulated the atomic deposition process in ideal/defected graphene nanostructures.
References
[1] Geim AK. Graphene: Status and Prospects. Science. 2009, 324(5934): 1530-1534. doi: 10.1126/science.1158877
[2] Lee C, Wei X, Kysar JW, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008, 321(5887): 385-388. doi: 10.1126/science.1157996
[3] Ansari R, Mirnezhad M, Rouhi H. Mechanical properties of fully hydrogenated graphene sheets. Solid State Communications. 2015, 201: 1-4. doi: 10.1016/j.ssc.2014.10.002
[4] Georgantzinos SK, Giannopoulos GI, Anifantis NK. Numerical investigation of elastic mechanical properties of graphene structures. Materials & Design. 2010, 31(10): 4646-4654. doi: 10.1016/j.matdes.2010.05.036
[5] Gao Y, Hao P. Mechanical properties of monolayer graphene under tensile and compressive loading. Physica E: Low-dimensional Systems and Nanostructures. 2009, 41(8): 1561-1566. doi: 10.1016/j.physe.2009.04.033
[6] Bu H, Chen Y, Zou M, et al. Atomistic simulations of mechanical properties of graphene nanoribbons. Physics Letters A. 2009, 373(37): 3359-3362. doi: 10.1016/j.physleta.2009.07.048
[7] Memarian F, Fereidoon A, Darvish Ganji M. Graphene Young’s modulus: Molecular mechanics and DFT treatments. Superlattices and Microstructures. 2015, 85: 348-356. doi: 10.1016/j.spmi.2015.06.001
[8] Vervuurt RHJ, Kessels WMM (Erwin), Bol AA. Atomic Layer Deposition for Graphene Device Integration. Advanced Materials Interfaces. 2017, 4(18). doi: 10.1002/admi.201700232
[9] Zhang Y, Ren W, Jiang Z, et al. Low-temperature remote plasma-enhanced atomic layer deposition of graphene and characterization of its atomic-level structure. J Mater Chem C. 2014, 2(36): 7570-7574. doi: 10.1039/c4tc00849a
[10] Neek-Amal M, Asgari R, Rahimi Tabar MR. The formation of atomic nanoclusters on graphene sheets. Nanotechnology. 2009, 20(13): 135602. doi: 10.1088/0957-4484/20/13/135602
[11] Wang X, Tabakman SM, Dai H. Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene. Journal of the American Chemical Society. 2008, 130(26): 8152-8153. doi: 10.1021/ja8023059
[12] Xuan Y, Wu YQ, Shen T, et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Applied Physics Letters. 2008, 92(1). doi: 10.1063/1.2828338
[13] Sun X, Xie M, Wang G, et al. Atomic Layer Deposition of TiO2on Graphene for Supercapacitors. Journal of The Electrochemical Society. 2012, 159(4): A364-A369. doi: 10.1149/2.025204jes
[14] Hong J, Hu Z, Probert M, et al. Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications. 2015, 6(1). doi: 10.1038/ncomms7293
[15] Ehrhart P. Properties and interactions of atomic defects in metals and alloys. In: Landolt-Börnstein, New Series III, Volume 25. Springer, Berlin. 1991.
[16] Siegel RW. Vacancy concentrations in metals. Journal of Nuclear Materials. 1978, 69-70: 117-146. doi: 10.1016/0022-3115(78)90240-4
[17] Jolfaei NA, Jolfaei NA, Hekmatifar M, et al. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Computer Methods and Programs in Biomedicine. 2020, 185: 105169. doi: 10.1016/j.cmpb.2019.105169
[18] Pishkenari HN, Afsharmanesh B, Tajaddodianfar F. Continuum models calibrated with atomistic simulations for the transverse vibrations of silicon nanowires. International Journal of Engineering Science. 2016, 100: 8-24. doi: 10.1016/j.ijengsci.2015.11.005
[19] Toghraie D, Hekmatifar M, Salehipour Y, et al. Molecular dynamics simulation of Couette and Poiseuille Water-Copper nanofluid flows in rough and smooth nanochannels with different roughness configurations. Chemical Physics. 2019, 527: 110505. doi: 10.1016/j.chemphys.2019.110505
[20] Albooyeh AR, Dadrasi A, Mashhadzadeh AH. Effect of point defects and low-density carbon-doped on mechanical properties of BNNTs: A molecular dynamics study. Materials Chemistry and Physics. 2020, 239: 122107. doi: 10.1016/j.matchemphys.2019.122107
[21] Zhou YP, Jiang JW. Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential. Scientific Reports. 2017, 7(1). doi: 10.1038/srep45516
[22] Board JA, Causey JW, Leathrum JF, et al. Accelerated molecular dynamics simulation with the parallel fast multipole algorithm. Chemical Physics Letters. 1992, 198(1-2): 89-94. doi: 10.1016/0009-2614(92)90053-p
[23] Rapaport DC. The Art of Molecular Dynamics Simulation. Published online April 1, 2004. doi: 10.1017/cbo9780511816581
[24] Alder BJ, Wainwright TE. Studies in Molecular Dynamics. I. General Method. The Journal of Chemical Physics. 1959, 31(2): 459-466. doi: 10.1063/1.1730376
[25] Rahman A. Correlations in the Motion of Atoms in Liquid Argon. Physical Review. 1964, 136(2A): A405-A411. doi: 10.1103/physrev.136.a405
[26] Gibson JB, Goland AN, Milgram M, et al. Dynamics of Radiation Damage. Physical Review. 1960, 120(4): 1229-1253. doi: 10.1103/physrev.120.1229
[27] Plimpton SJ, Thompson AP. Computational aspects of many-body potentials. MRS Bulletin. 2012, 37(5): 513-521. doi: 10.1557/mrs.2012.96
[28] Plimpton SJ, Pollock R, Stevens M. In: Proc of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN 223-245. 1997.
[29] Brown WM, Wang P, Plimpton SJ, et al. Implementing molecular dynamics on hybrid high performance computers—Short range forces. Computer Physics Communications. 2011, 182(4): 898-911. doi: 10.1016/j.cpc.2010.12.021
[30] Parks ML, Lehoucq RB, Plimpton SJ, et al. Implementing peridynamics within a molecular dynamics code. Computer Physics Communications. 2008, 179(11): 777-783. doi: 10.1016/j.cpc.2008.06.011
[31] Mukherjee RM, Crozier PS, Plimpton SJ, et al. Substructured molecular dynamics using multibody dynamics algorithms. International Journal of Non-Linear Mechanics. 2008, 43(10): 1040-1055. doi: 10.1016/j.ijnonlinmec.2008.04.003
[32] Tersoff J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B. 1989, 39(8): 5566-5568. doi: 10.1103/physrevb.39.5566
[33] Tersoff J. New empirical approach for the structure and energy of covalent systems. Physical Review B. 1988, 37(12): 6991-7000. doi: 10.1103/physrevb.37.6991
[34] Rappe AK, Casewit CJ, Colwell KS, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society. 1992, 114(25): 10024-10035. doi: 10.1021/ja00051a040
[35] Verlet L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review. 1967, 159(1): 98-103. doi: 10.1103/physrev.159.98
[36] Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Second-Order Conservative Equations. Numerical Recipes: The Art of Scientific Computing, 3rd ed. Cambridge University Press. 2007.
[37] Nosé S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics. 1984, 81(1): 511-519. doi: 10.1063/1.447334
[38] Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A. 1985, 31(3): 1695-1697. doi: 10.1103/physreva.31.1695
Copyright (c) 2024 Roozbeh Sabetvand, Sedigheh Bigom Hoseini
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it for any purpose, even commercially, under the condition that the authors are given credit. With this license, authors hold the copyright.