The study of multilayer graphene membrane performance in O2 purification process: Molecular dynamics simulation

  • Mohammad Pour Panah Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
  • Bahman Parvandar Asadollahi Mechanical Engineering Department, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz 61357-83151, Iran
  • Roozbeh Sabetvand Department of Energy Engineering and Physics, Faculty of Condensed Matter Physics, Amirkabir University of Technology, Tehran 159163-4311, Iran
Keywords: graphene; atomic membrane; molecular dynamics; purification process; oxygen; carbon dioxide

Abstract

We use molecular dynamics (MD) method to describe the atomic behavior of Graphene nanostructure for Oxygen molecules (O2) separation from Carbon dioxide (CO2) molecules. Technically, for the simulation of graphene-based membrane and O2-CO2 gas mixture, we used Tersoff and DREIDING force fields, respectively. The result of equilibrium process of these structures indicated the good stability of them. Physically, this behavior arises from the appropriate MD simulation settings. Furthermore, to describe the purification performance of graphene-based membrane, we report some physical parameters such as purification value, impurity rate, and permeability of membrane after atomic filtering process. Numerically, by defined membranes optimization, the purification value of them reach to 97.31%. Also, by using these atomic structures the CO2 impurity which passed from graphene-based membrane reach to zero value.

References

Bunch JS, Verbridge SS, Alden JS, et al. Impermeable Atomic Membranes from Graphene Sheets. Nano Letters. 2008; 8(8): 2458-2462. doi: 10.1021/nl801457b

Gilje S, Han S, Wang M, et al. A Chemical Route to Graphene for Device Applications. Nano Letters. 2007; 7(11): 3394-3398. doi: 10.1021/nl0717715

Schniepp HC, Li JL, McAllister MJ, et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. The Journal of Physical Chemistry B. 2006; 110(17): 8535-8539. doi: 10.1021/jp060936f

Zhou F, Fathizadeh M, Yu M. Single- to Few-Layered, Graphene-Based Separation Membranes. Annual Review of Chemical and Biomolecular Engineering. 2018; 9(1): 17-39. doi: 10.1146/annurev-chembioeng-060817-084046

Geim AK, Novoselov KS. The rise of graphene. Nature Materials. 2007; 6(3): 183-191. doi: 10.1038/nmat1849

Peres NMR, Ribeiro RM. Focus on graphene. New Journal of Physics. 2009; 11(9): 095002. doi: 10.1088/1367-2630/11/9/095002

Boehm HP, Setton R, Stumpp E. Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure and Applied Chemistry. 1994; 66(9): 1893-1901. doi: 10.1351/pac199466091893

Harris P. Transmission Electron Microscopy of Carbon: A Brief History. C. 2018; 4(1): 4. doi: 10.3390/c4010004

Nair RR, Blake P, Grigorenko AN, et al. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008; 320(5881): 1308-1308. doi: 10.1126/science.1156965

Lee C, Wei X, Kysar JW, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 2008; 321(5887): 385-388. doi: 10.1126/science.1157996

Tsang ACH, Kwok HYH, Leung DYC. The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sciences. 2017; 67: A1-A14. doi: 10.1016/j.solidstatesciences.2017.03.015

Qu L, Liu Y, Baek JB, et al. Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano. 2010; 4(3): 1321-1326. doi: 10.1021/nn901850u

Vivekchand SRC, Rout CS, Subrahmanyam KS, et al. Graphene-based electrochemical supercapacitors. Journal of Chemical Sciences. 2008; 120(1): 9-13. doi: 10.1007/s12039-008-0002-7

Zhang LL, Zhou R, Zhao XS. Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry. 2010; 20(29): 5983. doi: 10.1039/c000417k

Li H, Zou L, Pan L, et al. Novel Graphene-Like Electrodes for Capacitive Deionization. Environmental Science & Technology. 2010; 44(22): 8692-8697. doi: 10.1021/es101888j

Zhang D, Yan T, Shi L, et al. Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry. 2012; 22(29): 14696. doi: 10.1039/c2jm31393f

Yin H, Zhao S, Wan J, et al. Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High‐Performance Capacitive Deionization of Saline Water. Advanced Materials. 2013; 25(43): 6270-6276. doi: 10.1002/adma.201302223

Cohen-Tanugi D, Grossman JC. Water Desalination across Nanoporous Graphene. Nano Letters. 2012; 12(7): 3602-3608. doi: 10.1021/nl3012853

You Y, Sahajwalla V, Yoshimura M, et al. Graphene and graphene oxide for desalination. Nanoscale. 2016; 8(1): 117-119. doi: 10.1039/c5nr06154g

Cohen-Tanugi D, Lin LC, Grossman JC. Multilayer Nanoporous Graphene Membranes for Water Desalination. Nano Letters. 2016; 16(2): 1027-1033. doi: 10.1021/acs.nanolett.5b04089

Xue C, Wang X, Zhu W, et al. Electrochemical serotonin sensing interface based on double-layered membrane of reduced graphene oxide/polyaniline nanocomposites and molecularly imprinted polymers embedded with gold nanoparticles. Sensors and Actuators B: Chemical. 2014; 196: 57-63. doi: 10.1016/j.snb.2014.01.100

Asgari A, Nguyen Q, Karimipour A, et al. Investigation of additives nanoparticles and sphere barriers effects on the fluid flow inside a nanochannel impressed by an extrinsic electric field: A molecular dynamics simulation. Journal of Molecular Liquids. 2020; 318: 114023. doi: 10.1016/j.molliq.2020.114023

Ashkezari AZ, Jolfaei NA, Jolfaei NA, et al. Calculation of the thermal conductivity of human serum albumin (HSA) with equilibrium/non-equilibrium molecular dynamics approaches. Computer Methods and Programs in Biomedicine. 2020; 188: 105256. doi: 10.1016/j.cmpb.2019.105256

Ghanbari A, Warchomicka F, Sommitsch C, et al. Investigation of the Oxidation Mechanism of Dopamine Functionalization in an AZ31 Magnesium Alloy for Biomedical Applications. Coatings. 2019; 9(9): 584. doi: 10.3390/coatings9090584

Sabetvand R, Ghazi ME, Izadifard M. Studying temperature effects on electronic and optical properties of cubic CH3NH3SnI3 perovskite. Journal of Computational Electronics. 2020; 19(1): 70-79. doi: 10.1007/s10825-020-01443-3

Cohen-Tanugi D, Grossman JC. Water Desalination across Nanoporous Graphene. Nano Letters. 2012; 12(7): 3602-3608. doi: 10.1021/nl3012853

Cohen-Tanugi D, Lin LC, Grossman JC. Multilayer Nanoporous Graphene Membranes for Water Desalination. Nano Letters. 2016; 16(2): 1027-1033. doi: 10.1021/acs.nanolett.5b04089

Kim HW, Yoon HW, Yoon SM, et al. Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes. Science. 2013; 342(6154): 91-95. doi: 10.1126/science.1236098

Wang J, Zhang P, Liang B, et al. Graphene Oxide as an Effective Barrier on a Porous Nanofibrous Membrane for Water Treatment. ACS Applied Materials & Interfaces. 2016; 8(9): 6211-6218. doi: 10.1021/acsami.5b12723

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics. 1995; 117(1): 1-19. doi: 10.1006/jcph.1995.1039

Plimpton SJ, Thompson AP. Computational aspects of many-body potentials. MRS Bulletin. 2012; 37(5): 513-521. doi: 10.1557/mrs.2012.96

Aktulga HM, Fogarty JC, Pandit SA, et al. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing. 2012; 38(4-5): 245-259. doi: 10.1016/j.parco.2011.08.005

Brown WM, Wang P, Plimpton SJ, et al. Implementing molecular dynamics on hybrid high performance computers – short range forces. Computer Physics Communications. 2011; 182(4): 898-911. doi: 10.1016/j.cpc.2010.12.021

Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering. 2009; 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012

Rapaport DC. The Art of Molecular Dynamics Simulation, 2nd ed. Cambridge University Press; 2004.

Nosé S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics. 1984; 81(1): 511-519. doi: 10.1063/1.447334

Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A. 1985; 31(3): 1695-1697. doi: 10.1103/physreva.31.1695

Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. The Journal of Physical Chemistry. 1990; 94(26): 8897-8909. doi: 10.1021/j100389a010

Tersoff J. New empirical approach for the structure and energy of covalent systems. Physical Review B. 1988; 37(12): 6991-7000. doi: 10.1103/physrevb.37.6991

Lennard-Jones JE. On the Determination of Molecular Fields. Proceedings of the Royal Society of London. 1924; 106(738): 463–477.

Cohen-Tanugi D, Grossman JC. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination. The Journal of Chemical Physics. 2014; 141(7). doi: 10.1063/1.4892638

Nair RR, Wu HA, Jayaram PN, et al. Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science. 2012; 335(6067): 442-444. doi: 10.1126/science.1211694

Published
2024-04-09
How to Cite
Pour Panah, M., Asadollahi, B. P., & Sabetvand, R. (2024). The study of multilayer graphene membrane performance in O2 purification process: Molecular dynamics simulation. Nano Carbons, 2(1), 298. https://doi.org/10.59400/n-c.v2i1.298
Section
Original Research Article