Cumulative quantum mechanics—Quantum-size effects for: Nano-, angstrom- and femto-technologies

  • P. I. Vysikaylo Moscow Regional State University, 105005 Moscow, Russian Federation
Article ID: 1297
Keywords: physical doping; quantum size effects; nanocomposites; cumulative quantum mechanics; de Broglie wave cumulation; unlimited cumulation of de Broglie’s wave ψ-functions; cumulation-libration points; endo-electrons; fullerenes; cumulative-dissipative structures

Abstract

The leading laboratories continue intensive research into the properties of nanocomposites. Along with the discovery of new materials, new technologies are being developed, and attempts are being made to create mathematical models capable of describing phenomena in hollow quantum resonators—quantum dots, lines, and other cumulative-dissipative 3D structures of nanometer dimensions. New models make it possible to develop new materials, discover new patterns, and solve old fundamental problems in new ways. The author has discovered and classified more than 32 polarization quantum-size effects. We can explain all the quantum-size effects that we have discovered only by applying the fundamentals of cumulative quantum mechanics (CQM). These quantum size effects led to the discovery of the principles of physical doping and the classification of doping into physical and chemical doping. During physical doping, the modification of the properties of the nanocomposite is carried out with the help of nanostructures of foreign material, which have a high affinity for free electrons. In this case, the fractions of foreign material do not penetrate into the crystal lattice. A dopant with a high affinity for free electrons is charged with a negative charge, while a doped nanocrystal is charged with a positive charge. Therefore, physical doping of nanocomposites leads to the generation of electric fields that act as catalysts for various reactions, contribute to the strengthening of nanocomposites by Coulomb’s compression, increase the luminescent properties of phosphors, increase conductivity up to 1010 times, and other properties due to quantum size effects due to local violation of electrical neutrality. We used QCM to explain similar phenomena in the nano-, angstrom-, and femto-world of cumulative-dissipative structures. Based on experiments and QCM, we analyzed the processes: pulsation of electric fields in quantum resonators, partial collapse of the ψ-functions, expanded Dirac's claim about the limits of a ψ-function, and detailed the problem of the dualism in quantum mechanics—wave-particle at femtosecond times.

References

[1]Vysikaylo PI. Cumulative quantum mechanics: textbook. Available online: https://www.elibrary.ru/item.asp?ysclid=lutkbkkbow508233664&edn=apphek (accessed on 27 January 2024).

[2]Vysikaylo PI. Cumulative quantum mechanics (CQM) Part II. Application of cumulative quantum mechanics in describing the Vysikaylo polarization quantum-size effects. Surface Engineering and Applied Electrochemistry. 2012; 48(5): 395-411.

[3]Tuktarov RF, Akhmetyanov RF, Shikhovtseva ES. et al. Plasma oscillations in fullerene molecules during electron capture. Journal of ETP Letters. RF. 2005; 81(4): 207-211.

[4]Jaffke T, Illenbergen E, Lezius M, et al. Formation of C60− and C70− by free electron capture. Activation energy and effect of the internal energy on lifetime. Chem. Phys. Lett. 1994; 226: 213-218. doi: 10.1016/0009-2614(94)00704-7

[5]Huang J, Carman HS, Compton RN. Low-Energy Electron Attachment to C60. The Journal of Physical Chemistry. 1995; 99(6): 1719-1726. doi: 10.1021/j100006a013

[6]Polyanin AD. Handbook of linear equations of mathematical physics. Available online: https://al-shell.ru/articles/a-d-polyanin-spravochnik-po-lineynym-uravneniyam-matematicheskoy-fiziki-m-fizmatlit-2001/ (accessed on 27 January 2024).

[7]Vysikaylo P, Mitin V, Mashchenko V. Physical Doping Nanocomposites with Carbon Nanostructures with High Electron Affinity. Sensors & Transducers. 2021; 248(1): 18-26.

[8]Popov M, Buga S, Vysikaylo P, et al. C60-doping of nanostructured Bi-Sb-Te thermoelectrics. // Physica status solidi (a). 2011; 208(12): 2783-2789. doi: 10.1002/pssa.201127075

[9]Reed CA, Bolskar RD. Discrete Fulleride Anions and Fullerenium Cations. Chemical Reviews. 2000; 100(3): 1075-1120. doi: 10.1021/cr980017o

[10]Sidorov LN, Yurovskaya MA, Borshchevsky AY, et al. Fullerenes: textbook. Available online: https://vk.com/wall-70921366_34374 (accessed on 27 January 2024).

[11]Popova DM, Mavrin BN, Denisov VN, et al. Spectroscopic and first-principles studies of boron-doped diamond: Raman polarizability and local vibrational bands. Diamond and Related Materials. 2009; 18(5-8): 850-853. doi: 10.1016/j.diamond.2009.01.028

[12]Casimir HВG. On the attraction between two perfectly conducting plates. Proc. Kon. Nederl. Akad. Wet. 1948; 51: 793.

[13]Landau LD, Lifshits EM. Theoretical physics: textbook. allowance. Available online: https://archive.org/details/Teor-fizika-10-tomov-3-tom-2004 (accessed on 27 January 2024).

[14]Zababakhin EI, Zababakhin IE. Phenomena of unlimited cumulation. Available online: https://rusist.info/book/5707267?ysclid=luzdgpfs48922313383 (accessed on 27 January 2024).

[15]Fock V. Note on the virial set (German). Zeitschrift für Physik A. 1930; 63(11): 855-858. doi: 10.1007/BF01339281

[16]Rost JM. Physical Review A Physical Review Collection on Attosecond Science. Available online: https://journals.aps.org/pra/attosecond-science (accessed on 1 May 2024).

[17]Itatani J, Quéré F, Yudin GL, et al. Attosecond Streak Camera. Phys. Rev. Lett. 2002; 88: 173903.

[18]Véniard V, Taïeb R, Maquet A. Phase dependence of (N+1)-color (N>1) ir-uv photoionization of atoms with higher harmonics. Phys. Rev. A. 1996; 54.

[19]Klaiber M, Lv QZ, Sukiasyan S, et al. Reconciling Conflicting Approaches for the Tunneling Time Delay in Strong Field Ionization. Phys. Rev. Lett. 2022; 129: 203201.

[20]Neidel Ch, Klei J, Yang CH, et al. Probing Time-Dependent Molecular Dipoles on the Attosecond Time Scale. Phys. Rev. Lett. 2013; 111: 033001.

[21]Agostini P, Fabre F, Mainfray G, et al. Free-Free Transitions Following Six-Photon Ionization of Xenon Atoms. Phys. Rev. Lett. 1979; 42: 1127.

[22]Corkum PB. Plasma perspective on strong field multiphoton ionization Phys. Rev. Lett. 1993; 71: 1994.

[23]Lewenstein M, Balcou P, Ivanov MY, et al. Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A. 1994; 49: 2117.

[24]Lewenstein M, Kulander KC, Schafer KJ, Bucksbaum PH. Rings in above-threshold ionization: A quasiclassical analysis. Phys. Rev. A. 1995; 51: 1495.

[25]Krausz F, Ivanov M. Attosecond physics. Rev. Mod. Phys. 2009; 81: 163.

[26]Smeenk CTL, Arissian L, Zhou B, et al. Partitioning of the Linear Photon Momentum in Multiphoton Ionization. Phys. Rev. Lett. 2011; 106: 193002.

[27]Neppl S, Ernstorfer R, Bothschafter EM, et al. Attosecond Time-Resolved Photoemission from Core and Valence States of Magnesium. Phys. Rev. Lett. 2012; 109: 087401.

[28]Vysikaylo PI. Quantum Size Effects Arising from Nanocomposites Physical Doping with Nanostructures Having High Electron Affinit. Herald of the Bauman Moscow State Technical University Series Natural Sciences. 2021; 3(96): 150-175. doi: 10.18698/1812-3368-2021-3-150-175

[29]Denisov VN, Mavrin BN, Polyakov SN, et al. First observation of electronic structure of the even parity boron acceptor states in diamond. Physics Letters A. 2012; 376(44): 2812-2815. doi: 10.1016/j.physleta.2012.08.033

[30]Collins AT, Williams AWS. The nature of the acceptor centre in semiconducting diamond. J. Phys. C: Solid State Phys. 1971; 4: 1789-1800. doi: 10.1088/0022-3719/4/13/030

[31]Cherenko RM. Boron, the Dominant Acceptor in Semiconducting Diamond. Phys. Rev. B. 1973; 7: 4560-4567. doi: 10.1103/PhysRevB.7.4560

[32]Collins AT, Lightowlers EC, Dean PJ. Role of Phonons in the Oscillatory Photoconductivity Spectrum of Semiconducting Diamond. Phys. Review. 1969; 183(3): 725-730. doi: 10.1103/PhysRev.183.725

[33]Polyakov SN, Denisov VN, Mavrin BN, et al. Formation of Boron-Carbon Nanosheets and Bilayers in Boron-Doped Diamond: Origin of Metallicity and Superconductivity. Nanoscale Res Lett. 2016; 11(11). doi: 10.1186/s11671-015-1215-6

Published
2024-06-20
How to Cite
Vysikaylo, P. I. (2024). Cumulative quantum mechanics—Quantum-size effects for: Nano-, angstrom- and femto-technologies. Nano Carbons, 2(1), 1297. https://doi.org/10.59400/n-c.v2i1.1297
Section
Review