Recent progress in Nanomaterial based biosensors for the detection of cancer biomarkers in human fluids
Abstract
Cancer is a global health challenge, and early detection is crucial for effective treatment to improve patient outcomes. In recent years, nanomaterial-based biosensors have emerged as powerful tools for the detection of cancer biomarkers in human fluids. This article highlights the recent progress in biosensor technology for the detection of cancer biomarkers, focusing on advancements in sensitivity, selectivity, multiplexed detection, liquid biopsies, point-of-care testing, wearable biosensors, and integration with artificial intelligence (AI). Recent advancements have significantly improved the sensitivity and selectivity of biosensors, allowing for the detection of low concentrations of cancer biomarkers in complex biological samples. Novel sensing technologies, such as nanomaterial-based sensors and aptamer-based sensors, have played a crucial role in enhancing biosensor performance. Multiplexed biosensors have the ability to simultaneously detect multiple cancer biomarkers, providing comprehensive diagnostic information. This capability is particularly valuable for accurate cancer diagnosis and prognosis. Liquid biopsies, which involve the detection of cancer biomarkers in circulating tumor cells, cell-free DNA, or exosomes present in body fluids, have gained considerable attention. Biosensors have played a pivotal role in the development of liquid biopsy technologies, offering non-invasive and real-time monitoring of cancer progression, treatment response, and the emergence of drug resistance. Integration of biosensors with AI algorithms has shown great potential. AI can analyze and interpret biosensor data, identifying patterns, correlations, and biomarker signatures that may be difficult to detect with traditional methods.
References
[1] Kaya SI, Ozcelikay G, Mollarasouli F, et al. Recent achievements and challenges on nanomaterial based electrochemical biosensors for the detection of colon and lung cancer biomarkers. Sensors and Actuators B: Chemical. 2022; 351: 130856. doi: 10.1016/j.snb.2021.130856
[2] Yang Y, Huang Q, Xiao Z, et al. Nanomaterial-based biosensor developing as a route toward in vitro diagnosis of early ovarian cancer. Materials Today Bio. 2022; 13: 100218. doi: 10.1016/j.mtbio.2022.100218
[3] Prabowo BA, Cabral PD, Freitas P, et al. The Challenges of Developing Biosensors for Clinical Assessment: A Review. Chemosensors. 2021; 9(11): 299. doi: 10.3390/chemosensors9110299
[4] Karimi-Maleh H, Orooji Y, Karimi F, et al. A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosensors and Bioelectronics. 2021; 184: 113252. doi: 10.1016/j.bios.2021.113252
[5] Ramesh M, Janani R, Deepa C, et al. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. Biosensors. 2022; 13(1): 40. doi: 10.3390/bios13010040
[6] Ramya M, Senthil Kumar P, Rangasamy G, et al. A recent advancement on the applications of nanomaterials in electrochemical sensors and biosensors. Chemosphere. 2022; 308: 136416. doi: 10.1016/j.chemosphere.2022.136416
[7] Xiang Y, Hu C, Wu G, et al. Nanomaterial-based microfluidic systems for cancer biomarker detection: Recent applications and future perspectives. TrAC Trends in Analytical Chemistry. 2023; 158: 116835. doi: 10.1016/j.trac.2022.116835
[8] Li X, Ma F, Yang M, et al. Nanomaterial based analytical methods for breast cancer biomarker detection. Materials Today Advances. 2022; 14: 100219. doi: 10.1016/j.mtadv.2022.100219
[9] Heydari-Bafrooei E, Ensafi AA. Nanomaterials-based biosensing strategies for biomarkers diagnosis, a review. Biosensors and Bioelectronics: X. 2023; 13: 100245. doi: 10.1016/j.biosx.2022.100245
[10] Beck F, Loessl M, Baeumner AJ. Signaling strategies of silver nanoparticles in optical and electrochemical biosensors: considering their potential for the point-of-care. Microchimica Acta. 2023; 190(3): 91. doi: 10.1007/s00604-023-05666-6
[11] Adeel M, Rahman MdM, Caligiuri I, et al. Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosensors and Bioelectronics. 2020; 165: 112331. doi: 10.1016/j.bios.2020.112331
[12] Naresh V, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors. 2021; 21(4): 1109. doi: 10.3390/s21041109
[13] Wu J, Zhou X, Li P, et al. Ultrasensitive and Simultaneous SERS Detection of Multiplex MicroRNA Using Fractal Gold Nanotags for Early Diagnosis and Prognosis of Hepatocellular Carcinoma. Analytical Chemistry. 2021; 93(25): 8799–8809. doi: 10.1021/acs.analchem.1c00478
[14] Khan H, Shah MR, Barek J, et al. Cancer biomarkers and their biosensors: A comprehensive review. TrAC Trends in Analytical Chemistry. 2023; 158: 116813. doi: 10.1016/j.trac.2022.116813
[15] Yan R, Lu N, Han S, et al. Simultaneous detection of dual biomarkers using hierarchical MoS2 nanostructuring and nano-signal amplification-based electrochemical aptasensor toward accurate diagnosis of prostate cancer. Biosensors and Bioelectronics. 2022; 197: 113797. doi: 10.1016/j.bios.2021.113797
[16] Toyos-Rodríguez C, García-Alonso FJ, de la Escosura-Muñiz A. Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer’s Disease. Sensors. 2020; 20(17): 4748. doi: 10.3390/s20174748
[17] Kalambate PK, Noiphung J, Rodthongkum N, et al. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. TrAC Trends in Analytical Chemistry. 2021; 143: 116403. doi: 10.1016/j.trac.2021.116403
[18] Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. Nano Convergence. 2021; 8(1): 13. doi: 10.1186/s40580-021-00263-w
[19] Mummareddy S, Pradhan S, Narasimhan A, et al. On Demand Biosensors for Early Diagnosis of Cancer and Immune Checkpoints Blockade Therapy Monitoring from Liquid Biopsy. Biosensors. 2021; 11(12): 500. doi: 10.3390/bios11120500
[20] Li CH, Chan MH, Chang YC, et al. Gold Nanoparticles as a Biosensor for Cancer Biomarker Determination. Molecules. 2023; 28(1): 364. doi: 10.3390/molecules28010364
[21] Atapour A, Khajehzadeh H, Shafie M, et al. Gold nanoparticle-based aptasensors: A promising perspective for early-stage detection of cancer biomarkers. Materials Today Communications. 2022; 30: 103181. doi: 10.1016/j.mtcomm.2022.103181
[22] Choi N, Dang H, Das A, et al. SERS biosensors for ultrasensitive detection of multiple biomarkers expressed in cancer cells. Biosensors and Bioelectronics. 2020; 164: 112326. doi: 10.1016/j.bios.2020.112326
[23] Song C, Guo S, Jin S, et al. Biomarkers Determination Based on Surface-Enhanced Raman Scattering. Chemosensors. 2020; 8(4): 118. doi: 10.3390/chemosensors8040118
[24] Mohammadi R, Naderi-Manesh H, Farzin L, et al. Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: A review. Journal of Pharmaceutical and Biomedical Analysis. 2022; 212: 114628. doi: 10.1016/j.jpba.2022.114628
[25] Mousavi SM, Hashemi SA, Kalashgrani MY, et al. The Pivotal Role of Quantum Dots-Based Biomarkers Integrated with Ultra-Sensitive Probes for Multiplex Detection of Human Viral Infections. Pharmaceuticals. 2022; 15(7): 880. doi: 10.3390/ph15070880
[26] Soldado A, Barrio LC, Díaz-Gonzalez M, et al. Advances in quantum dots as diagnostic tools. Advances in Clinical Chemistry. 2022: 1–40. doi: 10.1016/bs.acc.2021.07.001
[27] Sengupta J, Hussain CM. CNT and Graphene-Based Transistor Biosensors for Cancer Detection: A Review. Biomolecules. 2023; 13(7): 1024. doi: 10.3390/biom13071024
[28] Aasi A, Aasi E, Mehdi Aghaei S, et al. CNT biodevices for early liver cancer diagnosis based on biomarkers detection- a promising platform. Journal of Molecular Graphics and Modelling. 2022; 114: 108208. doi: 10.1016/j.jmgm.2022.108208
[29] Safari M, Moghaddam A, Salehi Moghaddam A, et al. Carbon-based biosensors from graphene family to carbon dots: A viewpoint in cancer detection. Talanta. 2023; 258: 124399. doi: 10.1016/j.talanta.2023.124399
[30] Ghosh G. Early detection of cancer: Focus on antibody coated metal and magnetic nanoparticle-based biosensors. Sensors International. 2020; 1: 100050. doi: 10.1016/j.sintl.2020.100050
[31] Qureshi A, Tufani A, Corapcioglu G, et al. CdSe/CdS/ZnS nanocrystals decorated with Fe3O4 nanoparticles for point-of-care optomagnetic detection of cancer biomarker in serum. Sensors and Actuators B: Chemical. 2020; 321: 128431. doi: 10.1016/j.snb.2020.128431
[32] Ziegler JM, Andoni I, Choi EJ, et al. Sensors Based Upon Nanowires, Nanotubes, and Nanoribbons: 2016–2020. Analytical Chemistry. 2020; 93(1): 124–166. doi: 10.1021/acs.analchem.0c04476
[33] Smith R, Geary SM, Salem AK. Silicon Nanowires and Their Impact on Cancer Detection and Monitoring. ACS Applied Nano Materials. 2020; 3(9): 8522-–8536. doi: 10.1021/acsanm.0c01572
[34] Farzin A, Etesami SA, Quint J, et al. Magnetic Nanoparticles in Cancer Therapy and Diagnosis. Advanced Healthcare Materials. 2020; 9(9). doi: 10.1002/adhm.201901058
[35] Osuchowski M, Osuchowski F, Latos W, et al. The Use of Upconversion Nanoparticles in Prostate Cancer Photodynamic Therapy. Life. 2021; 11(4): 360. doi: 10.3390/life11040360
[36] Li S, Wei X, Li S, et al. Up-Conversion Luminescent Nanoparticles for Molecular Imaging, Cancer Diagnosis and Treatment. International Journal of Nanomedicine. 2020; 15: 9431–9445. doi: 10.2147/ijn.s266006
[37] Mohan B, Kumar S, Xi H, et al. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosensors and Bioelectronics. 2022; 197: 113738. doi: 10.1016/j.bios.2021.113738
[38] Afreen S, He Z, Xiao Y, et al. Nanoscale metal–organic frameworks in detecting cancer biomarkers. Journal of Materials Chemistry B. 2020; 8(7): 1338–1349. doi: 10.1039/c9tb02579k
[39] Wang X, Zhang Z, Wu G, et al. Applications of electrochemical biosensors based on functional antibody-modified screen-printed electrodes: A review. Analytical Methods. 2022; 14(1): 7–16. doi: 10.1039/d1ay01570b
[40] Neupane D, Stine KJ. Electrochemical Sandwich Assays for Biomarkers Incorporating Aptamers, Antibodies and Nanomaterials for Detection of Specific Protein Biomarkers. Applied Sciences. 2021; 11(15): 7087. doi: 10.3390/app11157087
[41] Chadha U, Bhardwaj P, Agarwal R, et al. Recent progress and growth in biosensors technology: A critical review. Journal of Industrial and Engineering Chemistry. 2022; 109: 21–51. doi: 10.1016/j.jiec.2022.02.010
[42] Magar HS, Hassan RYA, Mulchandani A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors. 2021; 21(19): 6578. doi: 10.3390/s21196578
[43] He H, Wu C, Saqib M, et al. Single-molecule fluorescence methods for protein biomarker analysis. Analytical and Bioanalytical Chemistry. 2023; 415(18): 3655–3669. doi: 10.1007/s00216-022-04502-9
[44] Ribeiro JA, Sales MGF, Pereira CM. Electrochemistry combined-surface plasmon resonance biosensors: A review. TrAC Trends in Analytical Chemistry. 2022; 157: 116766. doi: 10.1016/j.trac.2022.116766
[45] Sadani K, Nag P, Thian XY, et al. Enzymatic optical biosensors for healthcare applications. Biosensors and Bioelectronics: X. 2022; 12: 100278. doi: 10.1016/j.biosx.2022.100278
[46] Khanmohammadi A, Aghaie A, Vahedi E, et al. Electrochemical biosensors for the detection of lung cancer biomarkers: A review. Talanta. 2020; 206: 120251. doi: 10.1016/j.talanta.2019.120251
[47] Md Shakhih MF, Rosslan AS, Noor AM, et al. Review-Enzymatic and Non-Enzymatic Electrochemical Sensor for Lactate Detection in Human Biofluids. Journal of The Electrochemical Society. 2021; 168(6): 067502. doi: 10.1149/1945-7111/ac0360
[48] Kim JH, Suh YJ, Park D, et al. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomedical Engineering Letters. 2021; 11(4): 309–334. doi: 10.1007/s13534-021-00204-w
[49] Chiorcea-Paquim AM. Advances in Electrochemical Biosensor Technologies for the Detection of Nucleic Acid Breast Cancer Biomarkers. Sensors. 2023; 23(8): 4128. doi: 10.3390/s23084128
[50] Das J, Kelley SO. High‐Performance Nucleic Acid Sensors for Liquid Biopsy Applications. Angewandte Chemie International Edition. 2019; 59(7): 2554–2564. doi: 10.1002/anie.201905005
[51] Mihoc D, Lupu LM, Wiegand P, et al. Antibody Epitope and Affinity Determination of the Myocardial Infarction Marker Myoglobin by SPR-Biosensor Mass Spectrometry. Journal of the American Society for Mass Spectrometry. 2020; 32(1): 106–113. doi: 10.1021/jasms.0c00234
[52] Lupu LM, Wiegand P, Holdschick D, et al. Identification and Affinity Determination of Protein-Antibody and Protein-Aptamer Epitopes by Biosensor-Mass Spectrometry Combination. International Journal of Molecular Sciences. 2021; 22(23): 12832. doi: 10.3390/ijms222312832
[53] Topkaya SN, Azimzadeh M, Ozsoz M. Electrochemical Biosensors for Cancer Biomarkers Detection: Recent Advances and Challenges. Electroanalysis. 2016; 28(7): 1402–1419. doi: 10.1002/elan.201501174
[54] Wang B, Akiba U, Anzai J ichi. Recent Progress in Nanomaterial-Based Electrochemical Biosensors for Cancer Biomarkers: A Review. Molecules. 2017; 22(7): 1048. doi: 10.3390/molecules22071048
[55] Kerman K, Saito M, Tamiya E, et al. Nanomaterial-based electrochemical biosensors for medical applications. TrAC Trends in Analytical Chemistry. 2008; 27(7): 585–592. doi: 10.1016/j.trac.2008.05.004
[56] Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, et al. Nanomaterial-based biosensors for detection of pathogenic virus. TrAC Trends in Analytical Chemistry. 2017; 97: 445–457. doi: 10.1016/j.trac.2017.10.005
[57] Farzin L, Shamsipur M, Samandari L, et al. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Microchimica Acta. 2018; 185(5): 276. doi: 10.1007/s00604-018-2820-8
[58] Martín-Gracia B, Martín-Barreiro A, Cuestas-Ayllón C, et al. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. Journal of Materials Chemistry B. 2020; 8(31): 6710–6738. doi: 10.1039/d0tb00861c
[59] Koo KM, Soda N, Shiddiky MJA. Magnetic nanomaterial–based electrochemical biosensors for the detection of diverse circulating cancer biomarkers. Current Opinion in Electrochemistry. 2021; 25: 100645. doi: 10.1016/j.coelec.2020.100645
[60] Fang X, Wang Y, Wang S, et al. Nanomaterials assisted exosomes isolation and analysis towards liquid biopsy. Materials Today Bio. 2022; 16: 100371. doi: 10.1016/j.mtbio.2022.100371
[61] Kumar Ganechary P, Gupta T, Shekhar Yadav C. Development of nanomaterial-based biosensors for forensic applications. Materials Today: Proceedings. 2023; 95: 88–100. doi: 10.1016/j.matpr.2023.10.124
[62] Cordaro A, Neri G, Sciortino MT, et al. Graphene-Based Strategies in Liquid Biopsy and in Viral Diseases Diagnosis. Nanomaterials. 2020; 10(6): 1014. doi: 10.3390/nano10061014
[63] Dai Y, Han B, Dong L, et al. Recent advances in nanomaterial-enhanced biosensing methods for hepatocellular carcinoma diagnosis. TrAC Trends in Analytical Chemistry. 2020; 130: 115965. doi: 10.1016/j.trac.2020.115965
[64] Hasan MR, Ahommed MS, Daizy M, et al. Recent development in electrochemical biosensors for cancer biomarkers detection. Biosensors and Bioelectronics: X. 2021; 8: 100075. doi: 10.1016/j.biosx.2021.100075
[65] Khazaei M, Hosseini MS, Haghighi AM, et al. Nanosensors and their applications in early diagnosis of cancer. Sensing and Bio-Sensing Research. 2023; 41: 100569. doi: 10.1016/j.sbsr.2023.100569
[66] Sohrabi H, Bolandi N, Hemmati A, et al. State-of-the-art cancer biomarker detection by portable (Bio) sensing technology: A critical review. Microchemical Journal. 2022; 177: 107248. doi: 10.1016/j.microc.2022.107248
[67] Tufani A, Qureshi A, Niazi JH. Iron oxide nanoparticles based magnetic luminescent quantum dots (MQDs) synthesis and biomedical/biological applications: A review. Materials Science and Engineering: C. 2021; 118: 111545. doi: 10.1016/j.msec.2020.111545
[68] Li Y, Dong H, Tao Q, et al. Enhancing the magnetic relaxivity of MRI contrast agents via the localized superacid microenvironment of graphene quantum dots. Biomaterials. 2020; 250: 120056. doi: 10.1016/j.biomaterials.2020.120056
[69] Zhao Y, Zheng W, Hassan M. Nanoparticles for imaging application. Colloids for Nanobiotechnology—Synthesis, Characterization and Potential Applications. 2020: 67–88. doi: 10.1016/b978-0-08-102828-5.00004-8
[70] Haroon M, Tahir M, Nawaz H, et al. Surface-enhanced Raman scattering (SERS) spectroscopy for prostate cancer diagnosis: A review. Photodiagnosis and Photodynamic Therapy. 2022; 37: 102690. doi: 10.1016/j.pdpdt.2021.102690
[71] Kenry, Nicolson F, Clark L, et al. Advances in Surface Enhanced Raman Spectroscopy for in Vivo Imaging in Oncology. Nanotheranostics. 2022; 6(1): 31–49. doi: 10.7150/ntno.62970
[72] Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chemical Society Reviews. 2022; 51(1): 329–375. doi: 10.1039/c9cs00621d
[73] Moulahoum H, Ghorbanizamani F, Beduk T, et al. Emerging trends in nanomaterial design for the development of point-of-care platforms and practical applications. Journal of Pharmaceutical and Biomedical Analysis. 2023; 235: 115623. doi: 10.1016/j.jpba.2023.115623
[74] Alemu AG, Alemu AT. Recent advances of nanomaterial sensor for point-of care diagnostics applications and research. Advanced Nanomaterials for Point of Care Diagnosis and Therapy. 2022: 181–202. doi: 10.1016/b978-0-323-85725-3.00009-x
[75] Mahmoodpour M, Kiasari BA, Karimi M, et al. Paper-based biosensors as point-of-care diagnostic devices for the detection of cancers: A review of innovative techniques and clinical applications. Frontiers in Oncology. 2023; 13. doi: 10.3389/fonc.2023.1131435
[76] Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy. 2021; 6(1). doi: 10.1038/s41392-021-00572-w
[77] Anand U, Dey A, Chandel AKS, et al. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes & Diseases. 2023; 10(4): 1367–1401. doi: 10.1016/j.gendis.2022.02.007
[78] Calabretta MM, Zangheri M, Lopreside A, et al. Precision medicine, bioanalytics and nanomaterials: Toward a new generation of personalized portable diagnostics. The Analyst. 2020; 145(8): 2841–2853. doi: 10.1039/c9an02041a
[79] Tripathi A, Bonilla-Cruz J. Review on Healthcare Biosensing Nanomaterials. ACS Applied Nano Materials. 2023; 6(7): 5042–5074. doi: 10.1021/acsanm.3c00941
[80] Zhang L, Gu C, Wen J, et al. Recent advances in nanomaterial-based biosensors for the detection of exosomes. Analytical and Bioanalytical Chemistry. 2020; 413(1): 83–102. doi: 10.1007/s00216-020-03000-0
[81] Zhang R, Belwal T, Li L, et al. Nanomaterial‐based biosensors for sensing key foodborne pathogens: Advances from recent decades. Comprehensive Reviews in Food Science and Food Safety. 2020; 19(4): 1465–1487. doi: 10.1111/1541-4337.12576
[82] Shahazi R, Majumdar S, Saddam AI, et al. Carbon nanomaterials for biomedical applications: A comprehensive review. Nano Carbons. 2023; 1(1): 448. doi: 10.59400/n-c.v1i1.448
[83] Liu LS, Wang F, Ge Y, et al. Recent Developments in Aptasensors for Diagnostic Applications. ACS Applied Materials & Interfaces. 2020; 13(8): 9329–9358. doi: 10.1021/acsami.0c14788
[84] Oliveira BB, Ferreira D, Fernandes AR, et al. Engineering gold nanoparticles for molecular diagnostics and biosensing. WIREs Nanomedicine and Nanobiotechnology. 2022; 15(1). doi: 10.1002/wnan.1836
[85] Jarockyte G, Karabanovas V, Rotomskis R, et al. Multiplexed Nanobiosensors: Current Trends in Early Diagnostics. Sensors. 2020; 20(23): 6890. doi: 10.3390/s20236890
[86] Klebes A, Ates HC, Verboket RD, et al. Emerging multianalyte biosensors for the simultaneous detection of protein and nucleic acid biomarkers. Biosensors and Bioelectronics. 2024; 244: 115800. doi: 10.1016/j.bios.2023.115800
[87] Zhang Y, Liu Y. Advances in integrated digital microfluidic platforms for point-of-care diagnosis: A review. Sensors & Diagnostics. 2022; 1(4): 648–672. doi: 10.1039/d2sd00031h
[88] Fu X, Sun J, Liang R, et al. Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens. Trends in Food Science & Technology. 2021; 116: 115–129. doi: 10.1016/j.tifs.2021.07.006
[89] Qiao L, Benzigar MR, Subramony JA, et al. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & Interfaces. 2020; 12(30): 34337–34361. doi: 10.1021/acsami.0c07614
[90] Lin T, Xu Y, Zhao A, et al. Flexible electrochemical sensors integrated with nanomaterials for in situ determination of small molecules in biological samples: A review. Analytica Chimica Acta. 2022; 1207: 339461. doi: 10.1016/j.aca.2022.339461
[91] Li P, Lee GH, Kim SY, et al. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS Nano. 2021; 15(2): 1960–2004. doi: 10.1021/acsnano.0c06688
[92] Campuzano S, Pedrero M, Yáñez-Sedeño P, et al. New challenges in point of care electrochemical detection of clinical biomarkers. Sensors and Actuators B: Chemical. 2021; 345: 130349. doi: 10.1016/j.snb.2021.130349
[93] Li H, Li D, Chen H, et al. Application of Silicon Nanowire Field Effect Transistor (SiNW-FET) Biosensor with High Sensitivity. Sensors. 2023; 23(15): 6808. doi: 10.3390/s23156808
[94] Majumdar S, Shahazi R, Saddam AI, et al. Carbon nanomaterial-based electrochemical sensor in biomedical application, a comprehensive study. Characterization and Application of Nanomaterials. 2024; 7(1): 4654. doi: 10.24294/can.v7i1.4654
[95] Zhao W, Hu J, Liu J, et al. Si nanowire Bio-FET for electrical and label-free detection of cancer cell-derived exosomes. Microsystems & Nanoengineering. 2022; 8(1). doi: 10.1038/s41378-022-00387-x
[96] Huang S, Yang J, Fong S, et al. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Letters. 2020; 471: 61–71. doi: 10.1016/j.canlet.2019.12.007
[97] Iqbal MJ, Javed Z, Sadia H, et al. Clinical applications of artificial intelligence and machine learning in cancer diagnosis: looking into the future. Cancer Cell International. 2021; 21(1). doi: 10.1186/s12935-021-01981-1
[98] Elemento O, Leslie C, Lundin J, et al. Artificial intelligence in cancer research, diagnosis and therapy. Nature Reviews Cancer. 2021; 21(12): 747–752. doi: 10.1038/s41568-021-00399-1
[99] Forghani R, Savadjiev P, Chatterjee A, et al. Radiomics and Artificial Intelligence for Biomarker and Prediction Model Development in Oncology. Computational and Structural Biotechnology Journal. 2019; 17: 995–1008. doi: 10.1016/j.csbj.2019.07.001
[100] Dlamini Z, Francies FZ, Hull R, et al. Artificial intelligence (AI) and big data in cancer and precision oncology. Computational and Structural Biotechnology Journal. 2020; 18: 2300–2311. doi: 10.1016/j.csbj.2020.08.019
[101] Bera K, Braman N, Gupta A, et al. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nature Reviews Clinical Oncology. 2021; 19(2): 132–146. doi: 10.1038/s41571-021-00560-7
[102] Shin H, Choi BH, Shim O, et al. Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers. Nature Communications. 2023; 14(1): 1644. doi: 10.1038/s41467-023-37403-1
[103] Ahmed Z, Mohamed K, Zeeshan S, et al. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database. 2020; 2020. doi: 10.1093/database/baaa010
[104] Singh AV, Chandrasekar V, Paudel N, et al. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomedicine & Pharmacotherapy. 2023; 163: 114784. doi: 10.1016/j.biopha.2023.114784
[105] Zhang C, Xu J, Tang R, et al. Novel research and future prospects of artificial intelligence in cancer diagnosis and treatment. Journal of Hematology & Oncology. 2023; 16(1). doi: 10.1186/s13045-023-01514-5
[106] Sufyan M, Shokat Z, Ashfaq UA. Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective. Computers in Biology and Medicine. 2023; 165: 107356. doi: 10.1016/j.compbiomed.2023.107356
[107] Adir O, Poley M, Chen G, et al. Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Advanced Materials. 2019; 32(13). doi: 10.1002/adma.201901989
Copyright (c) 2024 Razu Shahazi, Amirul Islam Saddam, Md Rakibul Islam, Mohammed Muzibur Rahman, Giti Paimard, Ajoy Kumer, Md. Mahmud Alam, Md. Kawsar Mahamud
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it for any purpose, even commercially, under the condition that the authors are given credit. With this license, authors hold the copyright.