Effect of electrospun SF/CS composite fiber scaffold on cell proliferation and osteogenic differentiation of hBMSCs in vitro
Abstract
Objective: Using electrospinning to preparesilk fibroin/chitosan (SF/CS) nanofiber membrane scaffolds, and then evaluating its properties and effects on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) . Methods: The regenerated silk fibroin (SF) and chitosan (CS) were dissolved in the mixed solvent system of trifluoroacetic acid and dichloromethane by mass ratio (1 : 0, 1 : 1) . The structure and properties of the electrospun films were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermal gravity/differential thermal gravity analysis (TG/DTG). Cells in the experimental group were inoculated on the surface of SF and SF/CS membrane respectively. Cells in the control group were directly inoculated in culture dish. hBMSCs were used in each group to induce osteogenesis. CCK-8 was used to study the growth and proliferation of cells. Energy dispersive spectrometer (EDS) and alizarin red staining (ARS) were used to detect the ability of osteogenesis and mineralization. Results: Compared with SF scaffolds, SF/CS scaffolds had more uniform fiber diameter (SEM) and more stable conformation (FTIR) ; TG/DTG results showed that SF scaffolds had more thermal stability. CCK-8 showed that compared with the control group, there was no significant difference in proliferation of hBMSCs between SF and SF/CS groups when co-cultured for 5 and 7 days (P>0.05) . After 21 days of culture, elemental analysis indicated that the SF/CS group had higher calcium content. Compared with the control group and SF group, calcified nodules of hBMSCs in SF/CS group were significantly increased and staining was deep. Conclusions: Electrospinning SF/CS nanofibers scaffolds have good biocompatibility and can promote osteogenic differentiation of hBMSCs.
Copyright (c) 2021 Feiyang Chen, Shoushan Bu, Hai Zhuang, Chunling Gong, Jisheng Zhang
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors contributing to this journal agree to publish their articles under the Creative Commons Attribution 4.0 International License, allowing third parties to share their work (copy, distribute, transmit) and to adapt it for any purpose, even commercially, under the condition that the authors are given credit. With this license, authors hold the copyright.